Suppr超能文献

基于卷积神经网络的下肢冠状位对线的智能分析(通过X线影像)

Intelligent analysis of coronal alignment in lower limbs based on radiographic image with convolutional neural network.

作者信息

Nguyen Thong Phi, Chae Dong-Sik, Park Sung-Jun, Kang Kyung-Yil, Lee Woo-Suk, Yoon Jonghun

机构信息

Department of Mechanical Design Engineering, Hanyang University, 222, Wangsimni-ro, Seongdongsu, Seoul, 04763, Republic of Korea.

Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea.

出版信息

Comput Biol Med. 2020 May;120:103732. doi: 10.1016/j.compbiomed.2020.103732. Epub 2020 Mar 29.

Abstract

One of the first tasks in osteotomy and arthroplasty is to identify the lower limb varus and valgus deformity status. The measurement of a set of angles to determine this status is generally performed manually with the measurement accuracy depending heavily on the experience of the person performing the measurements. This study proposes a method for calculating the required angles in lower limb radiographic (X-ray) images supported by the convolutional neural network. To achieved high accuracy in the measuring process, not only is a decentralized deep learning algorithm, including two orders for the radiographic, utilized, but also a training dataset is built based on the geometric knowledge related to the deformity correction principles. The developed algorithm performance is compared with standard references consisting of manually measured values provided by doctors in 80 radiographic images exhibiting an impressively low deviation of less than 1.5° in 82.3% of the cases.

摘要

截骨术和关节成形术的首要任务之一是确定下肢内翻和外翻畸形状态。通常通过手动测量一组角度来确定这种状态,测量精度在很大程度上取决于测量者的经验。本研究提出了一种由卷积神经网络支持的计算下肢X线图像中所需角度的方法。为了在测量过程中实现高精度,不仅使用了一种去中心化深度学习算法,包括两个用于X线摄影的指令,还基于与畸形矫正原理相关的几何知识构建了一个训练数据集。将所开发算法的性能与由医生手动测量值组成的标准参考进行比较,在80张X线图像中,82.3%的病例显示出令人印象深刻的低偏差,偏差小于1.5°。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验