Khani Yashar, Bisadi Amir, Salmani Ali, Namazi Negarsadat, Elahi Vahed Iman, Kianparsa Joben, Nouroozi Mohammad, Mansouri Rad Fateme, Poursalehian Mohammad
Arch Bone Jt Surg. 2025;13(7):383-394. doi: 10.22038/ABJS.2025.84846.3864.
Lower limb alignment (LLA) measurements are vital for pre-operative assessments and surgical planning in orthopedics. Artificial intelligence (AI) can enhance the precision and consistency of these measurements. This systematic review and meta-analysis evaluates the accuracy and reliability of AI-based approaches in detecting anatomical landmarks and measuring LLA angles, highlighting both their strengths and limitations.
Adhering to PRISMA guidelines, we searched PubMed, Scopus, Embase, and Web of Science on July 2024 and included observational studies validating AI-driven LLA measurements. Pooled intraclass correlation coefficients (ICCs) were computed to assess inter-rater reliability between AI and manual measurements. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess study quality.
We reviewed 28 studies with 47,200 patients and 61,253 images; AI demonstrated high reliability in measuring 15 lower limb angles, with pooled ICCs ranging from 0.9811 to 1.0597. Angles like the hip-knee-ankle (HKA; ICC = 0.9987, 95% CI: 0.9975-0.9998) and the mechanical tibiofemoral angle (mTFA; ICC = 1.0001, 95% CI: 1.0001-1.0001) showed near-perfect agreement. In contrast, the joint line convergence angle (JLCA) and femoral anatomical-mechanical angle (FAMA) exhibited lower reliability and significant publication bias. Heterogeneity was substantial across most angles (I² = 63%-100%). These findings highlight the potential of AI for clinical applications while also identifying areas that require refinement and standardization.
AI exhibits high reliability and accuracy in measuring key LLA angles, often outperforming manual techniques in both speed and consistency. It holds significant promise as a clinical tool, though challenges with less reliable angles warrant further refinement. Future studies should focus on standardizing landmark definitions and addressing implementation barriers to maximize AI's potential in orthopedic practice.
下肢对线(LLA)测量对于骨科术前评估和手术规划至关重要。人工智能(AI)可以提高这些测量的精度和一致性。本系统评价和荟萃分析评估了基于AI的方法在检测解剖标志和测量LLA角度方面的准确性和可靠性,突出了其优势和局限性。
遵循PRISMA指南,我们于2024年7月在PubMed、Scopus、Embase和Web of Science上进行了检索,并纳入了验证AI驱动的LLA测量的观察性研究。计算合并组内相关系数(ICC)以评估AI与手动测量之间的评分者间可靠性。使用诊断准确性研究质量评估(QUADAS-2)工具评估研究质量。
我们回顾了28项研究,涉及47200名患者和61253张图像;AI在测量15个下肢角度方面显示出高可靠性,合并ICC范围为0.9811至1.0597。髋-膝-踝(HKA;ICC = 0.9987,95% CI:0.9975 - 0.9998)和机械性胫股角(mTFA;ICC = 1.0001,95% CI:1.0001 - 1.0001)等角度显示出近乎完美的一致性。相比之下,关节线汇聚角(JLCA)和股骨解剖-机械角(FAMA)的可靠性较低且存在显著的发表偏倚。大多数角度的异质性很大(I² = 63% - 100%)。这些发现突出了AI在临床应用中的潜力,同时也确定了需要改进和标准化的领域。
AI在测量关键LLA角度方面表现出高可靠性和准确性,在速度和一致性方面通常优于手动技术。作为一种临床工具,它具有巨大的潜力,尽管可靠性较低的角度存在挑战,需要进一步改进。未来的研究应专注于标准化标志定义并解决实施障碍,以最大限度地发挥AI在骨科实践中的潜力。