Suppr超能文献

迁移学习中多样化数据集对热人体检测的影响。

The Effect of a Diverse Dataset for Transfer Learning in Thermal Person Detection.

机构信息

Visual Analysis of People Lab, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark.

出版信息

Sensors (Basel). 2020 Apr 2;20(7):1982. doi: 10.3390/s20071982.

Abstract

Thermal cameras are popular in detection for their precision in surveillance in the dark and for privacy preservation. In the era of data driven problem solving approaches, manually finding and annotating a large amount of data is inefficient in terms of cost and effort. With the introduction of transfer learning, rather than having large datasets, a dataset covering all characteristics and aspects of the target place is more important. In this work, we studied a large thermal dataset recorded for 20 weeks and identified nine phenomena in it. Moreover, we investigated the impact of each phenomenon for model adaptation in transfer learning. Each phenomenon was investigated separately and in combination. the performance was analyzed by computing the F1 score, precision, recall, true negative rate, and false negative rate. Furthermore, to underline our investigation, the trained model with our dataset was further tested on publicly available datasets, and encouraging results were obtained. Finally, our dataset was also made publicly available.

摘要

热像仪因其在黑暗中监控的精确性和对隐私的保护而在检测中广受欢迎。在数据驱动的问题解决方法时代,手动查找和注释大量数据在成本和效率方面效率低下。随着迁移学习的引入,与其拥有大型数据集,不如拥有一个涵盖目标地点所有特征和方面的数据集更为重要。在这项工作中,我们研究了一个记录了 20 周的大型热像仪数据集,并在其中识别出了 9 种现象。此外,我们研究了每种现象对迁移学习中模型自适应的影响。我们分别和组合地研究了每种现象。通过计算 F1 分数、精度、召回率、真阴性率和假阴性率来分析性能。此外,为了强调我们的研究,我们使用自己的数据集对公开可用的数据集进行了进一步的测试,并获得了令人鼓舞的结果。最后,我们的数据集也被公开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5158/7180470/41999c0970dd/sensors-20-01982-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验