Suppr超能文献

流通操作中光流体纳米结构的结构稳定性

Structural Stability of Optofluidic Nanostructures in Flow-Through Operation.

作者信息

Bdour Yazan, Gomez-Cruz Juan, Escobedo Carlos

机构信息

Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.

Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.

出版信息

Micromachines (Basel). 2020 Apr 2;11(4):373. doi: 10.3390/mi11040373.

Abstract

Optofluidic sensors based on periodic arrays of subwavelength apertures that support surface plasmon resonance can be employed as both optical sensors and nanofluidic structures. In flow-through operation, the nanoapertures experience pressure differences across the substrate in which they are fabricated, which imposes the risk for structural failure. This work presents an investigation of the deflection and structural stability of nanohole array-based optofluidic sensors operating in flow-through mode. The analysis was approached using experiments, simulations via finite element method, and established theoretical models. The results depict that certain areas of the sensor deflect under pressure, with some regions suffering high mechanical stress. The offset in the deflection values between theoretical models and actual experimental values is overturned when only the effective area of the substrate, of 450 µm, is considered. Experimental, theoretical, and simulation results suggest that the periodic nanostructures can safely operate under trans-membrane pressures of up to 20 psi, which induce deflections of up to ~20 μm.

摘要

基于支持表面等离子体共振的亚波长孔径周期性阵列的光流体传感器,既可用作光学传感器,也可用作纳米流体结构。在流通操作中,纳米孔在其制造所在的基底上会经历压力差,这带来了结构失效的风险。这项工作对流通模式下基于纳米孔阵列的光流体传感器的挠度和结构稳定性进行了研究。分析采用了实验、通过有限元方法进行的模拟以及已有的理论模型。结果表明,传感器的某些区域在压力下会发生挠曲,一些区域承受着高机械应力。当仅考虑450 µm的基底有效面积时,理论模型与实际实验值之间的挠度值偏差被扭转。实验、理论和模拟结果表明,周期性纳米结构能够在高达20 psi的跨膜压力下安全运行,这种压力会导致高达约20 µm的挠度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验