Tokyo Metropolitan Institute of Medical Science, Tokyo, 1568506, Japan
Department of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720.
J Neurosci. 2020 Apr 29;40(18):3533-3548. doi: 10.1523/JNEUROSCI.2378-19.2020. Epub 2020 Apr 6.
Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling. Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation.
多巴胺能神经元支配大脑的广泛区域,并将多巴胺 (DA) 释放到广泛的靶神经元上。然而,DA 的释放也受到精确调控。在脑外植体制备中,DA 特异性释放到蘑菇体 (MB) 神经元的 α3/α'3 隔室,这些神经元碰巧被胆碱能和谷氨酸能输入激活。这种精确释放的机制尚不清楚。在这里,我们发现碰巧被激活的 MB 神经元会产生一氧化碳 (CO),作为一种逆行信号,从突触前末梢诱发局部 DA 释放。CO 的产生依赖于突触后 MB 神经元中血红素加氧酶的活性,而 CO 诱发的 DA 释放需要 DA 末梢中通过肌醇 1,4,5-三磷酸受体的 Ca2+外流。CO 仅在接收到巧合激活的 MB 区域中产生,并且使用清除剂去除 CO 会阻止 DA 释放。我们提出,DA 神经元使用两种不同的传输模式来产生全局和局部的 DA 信号传递。多巴胺 (DA) 是各种高级脑功能所必需的,包括记忆形成。然而,DA 神经元形成广泛的突触连接,而记忆形成需要高度特异性和局部化的 DA 释放。在这里,我们确定了一种通过这种机制来控制突触前末梢 DA 释放的机制。由胆碱能和谷氨酸能输入激活的突触后神经元产生一氧化碳,作为一种逆行信使诱导突触前 DA 释放。释放的 DA 是与记忆相关的可塑性所必需的。我们的工作确定了一种新的机制,将 DA 释放限制在记忆形成过程中需要 DA 的特定突触后部位。