Acc Chem Res. 2019 Oct 15;52(10):2841-2848. doi: 10.1021/acs.accounts.9b00386. Epub 2019 Sep 5.
Carbon is central to the chemistry of life, and in addition to its fundamental roles as a static component of all major biomolecules spanning proteins, nucleic acids, sugars, and lipids, emerging evidence shows that small and transient carbon-based metabolites, termed reactive carbon species (RCS), are dynamic signaling/stress agents that can influence a variety of biological pathways. Recent examples include the identification of carbon monoxide (CO) as an ion channel blocker and endogenous formaldehyde (FA) as a one-carbon metabolic unit formed from the spontaneous degradation of dietary folate metabolites. These findings motivate the development of analytical tools for transient carbon species that can achieve high specificity and sensitivity to further investigate RCS signaling and stress pathways at the cell, tissue, and whole-organism levels. This Account summarizes work from our laboratory on the development of new chemical tools to monitor two important one-carbon RCS, CO and FA, through activity-based sensing (ABS), where we leverage the unique chemical reactivities of these small and transient analytes, rather than lock-and-key binding considerations, for selective detection. Classic inorganic/organometallic and organic transformations form the basis for this approach. For example, to distinguish CO from other biological diatomics of similar shape and size (e.g., nitric oxide and oxygen), we exploit palladium-mediated carbonylation as a synthetic method for CO sensing. The high selectivity of this carbonylation approach successfully enables imaging of dynamic changes in intracellular CO levels in live cells. Likewise, we apply the aza-Cope reaction for FA detection to provide high selectivity for this one-carbon unit over other larger biological aldehydes that are reactive electrophiles, such as acetaldehyde and methylglyoxal. By relying on an activity-based trigger as a design principle for small-molecule detection, this approach can be generalized to create a toolbox of selective FA imaging reagents, as illustrated by a broad range of FA probes spanning turn-on and ratiometric fluorescence imaging, positron emission tomography imaging, and chemiluminescence imaging modalities. Moreover, these chemical tools have revealed new one-carbon biology through the identification of folate as a dietary source of FA and alcohol dehydrogenase 5 as a target for FA metabolism. Indeed, these selective RCS detection methods have been expanded to a wider array of imaging platforms, such as metal-complex-based time-gated luminescence and materials-based imaging scaffolds (e.g., nanotubes, nanoparticles, and carbon dots), with modalities extending to Raman and Rayleigh scattering readouts. This pursuit of leveraging selective chemical reactivity to develop highly specific ABS probes for imaging of RCS provides not only practical tools for deciphering RCS-dependent biology but also a general design platform for developing ABS probes for a broader range of biological analytes encompassing elements across the periodic table.
碳是生命化学的核心,除了作为跨越蛋白质、核酸、糖和脂质等主要生物分子的静态成分的基本作用外,新出现的证据表明,小而瞬态的基于碳的代谢物,称为反应性碳物种 (RCS),是动态的信号/应激剂,可以影响多种生物途径。最近的例子包括鉴定一氧化碳 (CO) 作为离子通道阻断剂和内源性甲醛 (FA) 作为一碳代谢单位,由膳食叶酸代谢物的自发降解形成。这些发现促使开发用于瞬态碳物种的分析工具,这些工具可以实现高特异性和灵敏度,以进一步研究细胞、组织和整个生物体水平的 RCS 信号和应激途径。本账户总结了我们实验室在开发新的化学工具方面的工作,这些工具可通过基于活性的感应 (ABS) 监测两种重要的一碳 RCS,CO 和 FA,我们利用这些小而瞬态分析物的独特化学反应性,而不是锁和键结合考虑,进行选择性检测。经典的无机/有机金属和有机转化构成了这种方法的基础。例如,为了将 CO 与其他形状和大小相似的生物双原子分子(例如一氧化氮和氧气)区分开来,我们利用钯介导的羰基化作用作为 CO 传感的合成方法。这种羰基化方法的高选择性成功地实现了活细胞内细胞内 CO 水平动态变化的成像。同样,我们应用氮杂-Cope 反应来检测 FA,以提供对这种一碳单元的高选择性,而不是对其他更大的反应性亲电生物醛(如乙醛和甲基乙二醛)的选择性。通过将基于活性的触发作为小分子检测的设计原则,这种方法可以推广到创建一个选择性 FA 成像试剂的工具箱,如一系列广泛的 FA 探针,涵盖开/关荧光成像、正电子发射断层扫描成像和化学发光成像模式。此外,这些化学工具通过鉴定叶酸作为 FA 的饮食来源和醇脱氢酶 5 作为 FA 代谢的靶标,揭示了新的一碳生物学。事实上,这些选择性 RCS 检测方法已扩展到更广泛的成像平台,例如基于金属配合物的时间门控发光和基于材料的成像支架(例如,纳米管、纳米粒子和碳点),模态扩展到拉曼和瑞利散射读出。这种利用选择性化学反应性开发用于 RCS 成像的高度特异性 ABS 探针的追求不仅为破译依赖 RCS 的生物学提供了实用工具,而且为开发涵盖元素周期表中更广泛生物分析物的 ABS 探针提供了一般设计平台。