Chan Stephanie, Reddy Vidhatha, Myers Bridget, Thibodeaux Quinn, Brownstone Nicholas, Liao Wilson
Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
Dermatol Ther (Heidelb). 2020 Jun;10(3):365-386. doi: 10.1007/s13555-020-00372-0. Epub 2020 Apr 6.
Machine learning (ML) has the potential to improve the dermatologist's practice from diagnosis to personalized treatment. Recent advancements in access to large datasets (e.g., electronic medical records, image databases, omics), faster computing, and cheaper data storage have encouraged the development of ML algorithms with human-like intelligence in dermatology. This article is an overview of the basics of ML, current applications of ML, and potential limitations and considerations for further development of ML. We have identified five current areas of applications for ML in dermatology: (1) disease classification using clinical images; (2) disease classification using dermatopathology images; (3) assessment of skin diseases using mobile applications and personal monitoring devices; (4) facilitating large-scale epidemiology research; and (5) precision medicine. The purpose of this review is to provide a guide for dermatologists to help demystify the fundamentals of ML and its wide range of applications in order to better evaluate its potential opportunities and challenges.
机器学习(ML)有潜力改善皮肤科医生从诊断到个性化治疗的业务。在获取大型数据集(如电子病历、图像数据库、组学数据)、更快的计算速度以及更廉价的数据存储方面的最新进展,推动了皮肤科领域具有类人智能的ML算法的发展。本文概述了ML的基础知识、ML的当前应用以及ML进一步发展的潜在局限性和注意事项。我们确定了ML在皮肤科当前的五个应用领域:(1)使用临床图像进行疾病分类;(2)使用皮肤病理学图像进行疾病分类;(3)使用移动应用程序和个人监测设备评估皮肤疾病;(4)促进大规模流行病学研究;(5)精准医学。本综述的目的是为皮肤科医生提供指导,帮助揭开ML的基本原理及其广泛应用的神秘面纱,以便更好地评估其潜在的机遇和挑战。