Suppr超能文献

创伤性脑损伤与人工智能:塑造神经康复的未来——综述

Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation-A Review.

作者信息

Orenuga Seun, Jordache Philip, Mirzai Daniel, Monteros Tyler, Gonzalez Ernesto, Madkoor Ahmed, Hirani Rahim, Tiwari Raj K, Etienne Mill

机构信息

School of Medicine, New York Medical College, Valhalla, NY 10595, USA.

Department of Psychiatry, Mayo Clinic, Phoenix, AZ 85054, USA.

出版信息

Life (Basel). 2025 Mar 7;15(3):424. doi: 10.3390/life15030424.

Abstract

Traumatic brain injury (TBI) is a leading cause of disability and death globally, presenting significant challenges for diagnosis, prognosis, and treatment. As healthcare technology advances, artificial intelligence (AI) has emerged as a promising tool in enhancing TBI rehabilitation outcomes. This literature review explores the current and potential applications of AI in TBI management, focusing on AI's role in diagnostic tools, neuroimaging, prognostic modeling, and rehabilitation programs. AI-driven algorithms have demonstrated high accuracy in predicting mortality, functional outcomes, and personalized rehabilitation strategies based on patient data. AI models have been developed to predict in-hospital mortality of TBI patients up to an accuracy of 95.6%. Furthermore, AI enhances neuroimaging by detecting subtle abnormalities that may be missed by human radiologists, expediting diagnosis and treatment decisions. Despite these advances, ethical considerations, including biases in AI algorithms and data generalizability, pose challenges that must be addressed to optimize AI's implementation in clinical settings. This review highlights key clinical trials and future research directions, emphasizing AI's transformative potential in improving patient care, rehabilitation, and long-term outcomes for TBI patients.

摘要

创伤性脑损伤(TBI)是全球致残和致死的主要原因之一,给诊断、预后和治疗带来了重大挑战。随着医疗技术的进步,人工智能(AI)已成为改善TBI康复效果的一种有前景的工具。这篇文献综述探讨了AI在TBI管理中的当前和潜在应用,重点关注AI在诊断工具、神经影像学、预后建模和康复计划中的作用。基于患者数据,AI驱动的算法在预测死亡率、功能结局和个性化康复策略方面已显示出高准确性。已经开发出AI模型来预测TBI患者的院内死亡率,准确率高达95.6%。此外,AI通过检测人类放射科医生可能遗漏的细微异常来增强神经影像学,加快诊断和治疗决策。尽管取得了这些进展,但伦理考量,包括AI算法中的偏差和数据可推广性,带来了一些挑战,必须加以解决,以优化AI在临床环境中的应用。本综述强调了关键临床试验和未来研究方向,强调了AI在改善TBI患者的医疗护理、康复和长期结局方面的变革潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6979/11943846/23024a6f96c8/life-15-00424-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验