Suppr超能文献

改善癌症检测中的皮肤颜色多样性:深度学习方法。

Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach.

作者信息

Rezk Eman, Eltorki Mohamed, El-Dakhakhni Wael

机构信息

School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.

Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.

出版信息

JMIR Dermatol. 2022 Aug 19;5(3):e39143. doi: 10.2196/39143.

Abstract

BACKGROUND

The lack of dark skin images in pathologic skin lesions in dermatology resources hinders the accurate diagnosis of skin lesions in people of color. Artificial intelligence applications have further disadvantaged people of color because those applications are mainly trained with light skin color images.

OBJECTIVE

The aim of this study is to develop a deep learning approach that generates realistic images of darker skin colors to improve dermatology data diversity for various malignant and benign lesions.

METHODS

We collected skin clinical images for common malignant and benign skin conditions from DermNet NZ, the International Skin Imaging Collaboration, and Dermatology Atlas. Two deep learning methods, style transfer (ST) and deep blending (DB), were utilized to generate images with darker skin colors using the lighter skin images. The generated images were evaluated quantitively and qualitatively. Furthermore, a convolutional neural network (CNN) was trained using the generated images to assess the latter's effect on skin lesion classification accuracy.

RESULTS

Image quality assessment showed that the ST method outperformed DB, as the former achieved a lower loss of realism score of 0.23 (95% CI 0.19-0.27) compared to 0.63 (95% CI 0.59-0.67) for the DB method. In addition, ST achieved a higher disease presentation with a similarity score of 0.44 (95% CI 0.40-0.49) compared to 0.17 (95% CI 0.14-0.21) for the DB method. The qualitative assessment completed on masked participants indicated that ST-generated images exhibited high realism, whereby 62.2% (1511/2430) of the votes for the generated images were classified as real. Eight dermatologists correctly diagnosed the lesions in the generated images with an average rate of 0.75 (360 correct diagnoses out of 480) for several malignant and benign lesions. Finally, the classification accuracy and the area under the curve (AUC) of the model when considering the generated images were 0.76 (95% CI 0.72-0.79) and 0.72 (95% CI 0.67-0.77), respectively, compared to the accuracy of 0.56 (95% CI 0.52-0.60) and AUC of 0.63 (95% CI 0.58-0.68) for the model without considering the generated images.

CONCLUSIONS

Deep learning approaches can generate realistic skin lesion images that improve the skin color diversity of dermatology atlases. The diversified image bank, utilized herein to train a CNN, demonstrates the potential of developing generalizable artificial intelligence skin cancer diagnosis applications.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/34896.

摘要

背景

皮肤病学资源中病理性皮肤病变缺乏深色皮肤图像,这阻碍了对有色人种皮肤病变的准确诊断。人工智能应用进一步使有色人种处于不利地位,因为这些应用主要是用浅色皮肤图像进行训练的。

目的

本研究的目的是开发一种深度学习方法,生成更逼真的深色皮肤图像,以改善各种恶性和良性病变的皮肤病学数据多样性。

方法

我们从新西兰皮肤病网(DermNet NZ)、国际皮肤影像协作组织(International Skin Imaging Collaboration)和皮肤病图谱(Dermatology Atlas)收集了常见恶性和良性皮肤疾病的皮肤临床图像。使用两种深度学习方法,即风格迁移(ST)和深度融合(DB),利用浅色皮肤图像生成深色皮肤图像。对生成的图像进行定量和定性评估。此外,使用生成的图像训练卷积神经网络(CNN),以评估后者对皮肤病变分类准确性的影响。

结果

图像质量评估表明,ST方法优于DB方法,因为前者的逼真度损失得分较低,为0.23(95%置信区间0.19 - 0.27),而DB方法为0.63(95%置信区间0.59 - 0.67)。此外,ST方法在疾病呈现方面得分更高,相似度得分为0.44(95%置信区间0.40 - 0.49),而DB方法为0.17(95%置信区间0.14 - 0.21)。对蒙面参与者进行的定性评估表明,ST生成的图像具有很高的逼真度,其中62.2%(1511/2430)的生成图像投票被归类为真实图像。八位皮肤科医生正确诊断了生成图像中的病变,对于几种恶性和良性病变,平均诊断率为0.75(480次诊断中有360次正确诊断)。最后,考虑生成图像时模型的分类准确率和曲线下面积(AUC)分别为0.76(95%置信区间0.72 - 0.79)和0.72(95%置信区间0.67 - 0.77),而不考虑生成图像的模型准确率为0.56(95%置信区间0.52 - 0.60),AUC为0.63(95%置信区间0.58 - 0.68)。

结论

深度学习方法可以生成逼真的皮肤病变图像,改善皮肤病图谱的肤色多样性。本文利用的多样化图像库训练了一个CNN,证明了开发可推广的人工智能皮肤癌诊断应用的潜力。

国际注册报告识别码(IRRID):RR2 - 10.2196/34896。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9d0/10334920/4fa9e3c79a9f/derma_v5i3e39143_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验