Dahabreh Issa J, Robertson Sarah E, Steingrimsson Jon A, Stuart Elizabeth A, Hernán Miguel A
Center for Evidence Synthesis in Health, Brown University, Providence, Rhode Island.
Department of Health Services, Policy & Practice, Brown University, Providence, Rhode Island.
Stat Med. 2020 Jun 30;39(14):1999-2014. doi: 10.1002/sim.8426. Epub 2020 Apr 6.
When treatment effect modifiers influence the decision to participate in a randomized trial, the average treatment effect in the population represented by the randomized individuals will differ from the effect in other populations. In this tutorial, we consider methods for extending causal inferences about time-fixed treatments from a trial to a new target population of nonparticipants, using data from a completed randomized trial and baseline covariate data from a sample from the target population. We examine methods based on modeling the expectation of the outcome, the probability of participation, or both (doubly robust). We compare the methods in a simulation study and show how they can be implemented in software. We apply the methods to a randomized trial nested within a cohort of trial-eligible patients to compare coronary artery surgery plus medical therapy versus medical therapy alone for patients with chronic coronary artery disease. We conclude by discussing issues that arise when using the methods in applied analyses.
当治疗效果修饰因素影响参与随机试验的决策时,随机化个体所代表的总体中的平均治疗效果将与其他总体中的效果不同。在本教程中,我们考虑使用来自已完成随机试验的数据以及目标总体样本的基线协变量数据,将关于固定时间治疗的因果推断从试验扩展到新的未参与者目标总体的方法。我们研究基于对结局期望、参与概率或两者(双重稳健)进行建模的方法。我们在模拟研究中比较这些方法,并展示如何在软件中实现它们。我们将这些方法应用于嵌套在符合试验条件患者队列中的一项随机试验,以比较慢性冠状动脉疾病患者接受冠状动脉手术加药物治疗与单纯药物治疗的效果。我们通过讨论在应用分析中使用这些方法时出现的问题来结束本文。