Suppr超能文献

一种用于扩展来自一系列试验的推断的两阶段方法。

A Two-Stage Method for Extending Inferences From a Collection of Trials.

作者信息

Schnitzler Nicole, Kaizar Eloise

机构信息

Ohio Colleges of Medicine Government Resource Center, The Ohio State University, Columbus, Ohio, USA.

Department of Statistics, The Ohio State University, Columbus, Ohio, USA.

出版信息

Stat Med. 2025 Jun;44(13-14):e70146. doi: 10.1002/sim.70146.

Abstract

When considering the effect a treatment will cause in a population of interest, we often look to evidence from randomized controlled trials. In settings where multiple trials on a treatment are available, we may wish to synthesize the trials' participant data to obtain causally interpretable estimates of the average treatment effect in a specific target population. Traditional meta-analytic approaches to synthesizing data from multiple studies estimate the average effect among the studies. The resulting estimate is often not causally interpretable in any population, much less a particular target population, due to heterogeneity in the effect of treatment across studies. Inspired by traditional two-stage meta-analytic methods and methods for extending inferences from a single study, we propose a two-stage approach to extending inferences from a collection of randomized controlled trials that can be used to obtain causally interpretable estimates of treatment effects in a target population when there is between-study heterogeneity in conditional average treatment effects. We first introduce a collection of assumptions under which the target population's average treatment effect is identifiable when conditional average treatment effects are heterogeneous across studies. We then introduce an estimator that utilizes weighting in two stages, taking a weighted average of study-specific estimates of the treatment effect in the target population. We assess the performance of our proposed approach through simulation studies and two applications: A multi-center randomized clinical trial studying a Hepatitis-C treatment and a collection of studies on a therapy treatment for symptoms of pediatric traumatic brain injury.

摘要

在考虑一种治疗方法对感兴趣人群的影响时,我们常常会参考随机对照试验的证据。在有多种关于某一治疗方法的试验的情况下,我们可能希望综合这些试验的参与者数据,以获得对特定目标人群中平均治疗效果的因果可解释估计。传统的综合多项研究数据的荟萃分析方法估计的是各项研究中的平均效果。由于不同研究中治疗效果存在异质性,所得估计往往在任何人群中都无法进行因果解释,更不用说在特定的目标人群中了。受传统两阶段荟萃分析方法以及从单个研究扩展推断的方法的启发,我们提出了一种从一组随机对照试验扩展推断的两阶段方法,当条件平均治疗效果在研究之间存在异质性时,该方法可用于获得目标人群中治疗效果的因果可解释估计。我们首先引入一组假设,在这些假设下,当条件平均治疗效果在不同研究中存在异质性时,目标人群的平均治疗效果是可识别的。然后我们引入一种估计器,它分两个阶段进行加权,对目标人群中治疗效果的研究特定估计值取加权平均值。我们通过模拟研究和两个应用案例评估了我们提出的方法的性能:一个研究丙型肝炎治疗的多中心随机临床试验,以及一组关于小儿创伤性脑损伤症状治疗的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12f7/12138745/9eaafa7ffa10/SIM-44-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验