Yan Yichen, Vuong Quang, Metcalfe Rebecca K, Guan Tianyu, Shi Haolun, Park Jay J H
Department of Statistical and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada.
Core Clinical Sciences, Vancouver, British Columbia, Canada.
Pharm Stat. 2025 Sep-Oct;24(5):e70029. doi: 10.1002/pst.70029.
Transportability analysis is a causal inference framework used to evaluate the external validity of studies by transporting treatment effects from a study sample to an external target population by adjusting for differences in the distributions of their effect modifiers. Most existing methods require individual patient-level data (IPD) for both the source and the target population, narrowing its applicability when only target aggregate-level data (AgD) are available. For survival analysis, accounting for censoring may be needed to reduce bias, yet AgD-based transportability methods in the presence of informative-censoring remain underexplored. Here, we propose a two-stage weighting framework named "Target Aggregate Data Adjustment" (TADA) that can simultaneously adjust for both censoring bias and distributional imbalances of effect modifiers. In our framework, the final weights are the product of the time-varying inverse probability of censoring weights and participation weights derived using the method of moments. We have conducted an extensive simulation study to evaluate TADA's performance. We have applied our methods to a real case study on the squamous non-small-cell lung cancer trial (NCT00981058). Our results indicate that TADA can effectively control the bias resulting from moderate censoring representative of most practical scenarios, and enhance the application and clinical interpretability of transportability analyses in settings with limited data availability.
可移植性分析是一种因果推断框架,用于通过调整效应修饰因素分布的差异,将治疗效果从研究样本转移到外部目标人群,从而评估研究的外部有效性。大多数现有方法需要源人群和目标人群的个体患者水平数据(IPD),当仅可获得目标总体水平数据(AgD)时,会限制其适用性。对于生存分析,可能需要考虑删失以减少偏差,但在存在信息删失的情况下,基于AgD的可移植性方法仍未得到充分探索。在此,我们提出了一种名为“目标总体数据调整”(TADA)的两阶段加权框架,该框架可以同时调整删失偏差和效应修饰因素的分布失衡。在我们的框架中,最终权重是使用矩方法得出的时变逆删失概率权重和参与权重的乘积。我们进行了广泛的模拟研究以评估TADA的性能。我们已将我们的方法应用于鳞状非小细胞肺癌试验(NCT00981058)的实际案例研究。我们的结果表明,TADA可以有效控制大多数实际场景中典型的中度删失所导致的偏差,并增强在数据可用性有限的情况下可移植性分析的应用和临床可解释性。