Nanoscience Centre, University of Cambridge, J. J. Thomson Avenue, CB3 0FF, UK.
J Mater Chem B. 2019 Apr 14;7(14):2349-2361. doi: 10.1039/c9tb00168a. Epub 2019 Mar 8.
Every biosensor, bioengineered scaffold or biomedical implant depends crucially on an ability to control protein adsorption at the material surface. Yet the adsorption of proteins to solid surfaces in aqueous media is a complex and poorly understood phenomenon. To gain further insights we study protein adsorption using the quartz crystal microbalance for 10 model globular proteins interacting with positive, negative, neutral, hydrophobic and mixed alkanethiol monolayers as well as silica, polystyrene and Teflon, equating to approximately 200 protein-surface combinations. The charge state of the materials in liquid was measured with atomic force microscopy using a colloidal probe and numerically solving the full non-linear Poisson-Boltzmann equation. This approach has allowed us to address some of the important questions surrounding the basic principles that govern protein adsorption including the relative importance of net charge and hydrophobicity and why some materials are protein resistant. With our set of mixed monolayer surfaces, we can modulate charge over a wide range whilst eliminating hydrophobic interactions and vice versa- thus permitting determination of the functional dependence of adsorption on these parameters. This has led us to develop two empirical predictive models with up to 90% accuracy that together encompass most materials relevant to biotechnological and biomedical applications.
每种生物传感器、生物工程支架或生物医学植入物都严重依赖于控制材料表面蛋白质吸附的能力。然而,蛋白质在水介质中固体表面的吸附是一个复杂且尚未被充分理解的现象。为了获得更深入的认识,我们使用石英晶体微天平研究蛋白质吸附,涉及与正电荷、负电荷、中性、疏水性和混合烷硫醇单层以及二氧化硅、聚苯乙烯和特氟龙相互作用的 10 种模型球状蛋白质,相当于约 200 种蛋白质-表面组合。使用胶体探针通过原子力显微镜测量材料在液体中的电荷状态,并通过数值求解完整的非线性泊松-玻尔兹曼方程。这种方法使我们能够解决围绕控制蛋白质吸附的基本原理的一些重要问题,包括净电荷和疏水性的相对重要性以及为什么有些材料具有抗蛋白质性。通过我们的混合单层表面集,我们可以在消除疏水性相互作用的同时在宽范围内调节电荷,反之亦然-从而可以确定吸附对这些参数的功能依赖性。这使我们开发了两个具有高达 90%准确性的经验预测模型,它们共同涵盖了与生物技术和生物医学应用相关的大多数材料。