Suppr超能文献

淀粉样前体蛋白的实时纳米级组织。

Real-time nanoscale organization of amyloid precursor protein.

机构信息

Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.

出版信息

Nanoscale. 2020 Apr 21;12(15):8200-8215. doi: 10.1039/d0nr00052c. Epub 2020 Apr 7.

Abstract

Despite an intuitive understanding of the role of APP in health and disease, there exist few attempts to dissect its molecular localization at excitatory synapses. Though the biochemistry involved in the enzymatic processing of APP is well understood, there is a void in understanding the nonuniformity of the product formation in vivo. Here, we employed multiple paradigms of single molecules and ensemble based nanoscopic imaging to reveal that APP molecules are organized into regulatory nanodomains that are differentially compartmentalized in the functional zones of an excitatory synapse. Furthermore, with the aid of high density single particle tracking, we show that the lateral diffusion of APP in live cells dictates an equilibrium between these nanodomains and their nano-environment, which is affected in a detrimental variant of APP. Additionally, we incorporate this spatio-temporal detail 'in silico' to generate a realistic nanoscale topography of APP in dendrites and synapses. This approach uncovers a nanoscale heterogeneity in the molecular organization of APP, depicting a locus for differential APP processing. This holistic paradigm, to decipher the real-time heterogeneity of the substrate molecules on the nanoscale, could enable us to better evaluate the molecular constraints overcoming the ensemble approaches used traditionally to understand the kinetics of product formation.

摘要

尽管人们对 APP 在健康和疾病中的作用有直观的理解,但很少有人试图剖析其在兴奋性突触处的分子定位。尽管 APP 的酶促加工所涉及的生物化学已得到很好的理解,但对于体内产物形成的非均一性仍存在理解上的空白。在这里,我们采用了多种单分子和基于集合的纳米成像范例,揭示了 APP 分子被组织成调节纳米域,这些纳米域在兴奋性突触的功能区中存在差异分区。此外,借助高密度单颗粒跟踪,我们表明 APP 在活细胞中的侧向扩散决定了这些纳米域与其纳米环境之间的平衡,而 APP 的有害变体则会影响这种平衡。此外,我们将这种时空细节“在计算机中”进行整合,以生成树突和突触中 APP 的真实纳米级形貌。这种方法揭示了 APP 分子组织的纳米级异质性,描绘了 APP 进行差异加工的位置。这种整体范式可用于解析纳米尺度上底物分子的实时异质性,使我们能够更好地评估克服传统上用于理解产物形成动力学的集合方法的分子限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验