Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
Interdisciplinary Institute for Neuroscience CNRS UMR5297, University of Bordeaux, Bordeaux, France.
Cell Mol Life Sci. 2023 Sep 20;80(10):295. doi: 10.1007/s00018-023-04939-w.
Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "YENPTY" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of YENPTY, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).
最近,淀粉样前体蛋白(APP)的定位到可逆的纳米级超分子组装或“纳米域”已被强调为理解阿尔茨海默病(AD)分子病理学发病机制的关键。APP 的表面表达受与其相互作用的蛋白质调控,控制其在突触膜上的保留和横向转运。在这里,我们评估了阿尔茨海默病的一个关键风险因素,PICALM,作为 APP 纳米级动力学的关键调节因子的作用。尽管 PICALM 在突触后密度中富集,但它也定位于突触前活性区和内吞区。PICALM 与 APP 共定位,并在不同的亚突触区形成具有独特形态特征的纳米域。接下来,我们评估了这种亚突触区定位是否受 APP 的 C 端序列,即“YENPTY”域调节。为此,我们发现 APP 的 C 端区域的缺失(包括 YENPTY 域的部分或完全缺失),即 APP-Δ9 和 APP-Δ14,影响 APP 的侧向扩散和纳米级分离。APP 突变体 APP-Δ14 的侧向扩散类似于 APP 的一种有害瑞典突变体 APP-SWE,而 APP-Δ9 的扩散类似于野生型 APP。有趣的是,PICALM 的过表达差异改变了 APP C 端缺失突变体的侧向扩散。这些观察结果证实,APP 的 C 端序列调节其侧向扩散和可逆纳米级域的形成。因此,当与常染色体显性突变结合时,它会产生不同的分子模式,导致阿尔茨海默病(AD)的发病。