State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China.
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China.
ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43641-43649. doi: 10.1021/acsami.8b15659. Epub 2018 Dec 6.
Hybridization of nanostructured cobalt oxides with carbon nanotubes (CNTs) is considered to be an operative approach to harvest high-performance anode material for lithium-ion batteries (LIBs). On the other hand, there are numerous related works, most of which adopted a "post-combination" strategy, which is not only complicated but also ecologically unpromising for using toxic acid for surface modification of CNTs. Herein, we productively fabricate Co@CoO/CNTs nanocomposite with excellent conductivity through arc discharge following low-temperature oxidation in air. As the anode material for LIBs, this nanocomposite shows an exceedingly high reversible capacity of 820 mA h g at a current density of 0.2 A g after 250 cycles, much higher than its theoretical capacity. The rate performance of the material is also outstanding, with a capacity of 760 mA h g after 350 cycles at 1 A g (103% of the initial capacity) and 529 mA h g after 600 cycles at 2 A g. X-ray photoelectron spectroscopy tests are accomplished to disclose the true cause of extra capacity. And for the first time, we propose an "electron-sharing" storage mode, where extra electrons and Li can separate and be stored at the interface of cobalt metal/LiO. This not only gives a reasonable revelation for this unusual capacity exceeding the theoretical value but also directs the capacitor-like electrochemical behavior extra capacity.
将纳米结构的钴氧化物与碳纳米管(CNTs)杂交被认为是一种有效的方法,可以收获用于锂离子电池(LIBs)的高性能阳极材料。另一方面,有许多相关的工作,其中大多数采用了“后组合”策略,这不仅复杂,而且使用有毒酸对 CNTs 进行表面改性在生态上也没有前途。在此,我们通过在空气中进行低温氧化,成功地通过电弧放电制备了具有优异导电性的 Co@CoO/CNTs 纳米复合材料。作为 LIBs 的阳极材料,该纳米复合材料在 250 次循环后以 0.2 A g 的电流密度显示出极高的可逆容量 820 mA h g,远高于其理论容量。该材料的倍率性能也很出色,在 1 A g 下经过 350 次循环后容量为 760 mA h g(初始容量的 103%),在 2 A g 下经过 600 次循环后容量为 529 mA h g。我们进行了 X 射线光电子能谱测试以揭示额外容量的真正原因。并且我们首次提出了一种“电子共享”存储模式,其中额外的电子和 Li 可以在钴金属/LiO 的界面上分离并存储。这不仅为这种异常的超过理论值的容量提供了合理的启示,而且还指导了具有类似电容器的电化学行为的额外容量。