Suppr超能文献

基于 CT 纹理分析和密度测定的慢性阻塞性肺疾病定量评估:来自丹麦肺癌筛查试验的结果。

Chronic Obstructive Pulmonary Disease Quantification Using CT Texture Analysis and Densitometry: Results From the Danish Lung Cancer Screening Trial.

机构信息

Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Copenhagen, Denmark.

Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

出版信息

AJR Am J Roentgenol. 2020 Jun;214(6):1269-1279. doi: 10.2214/AJR.19.22300. Epub 2020 Apr 7.

Abstract

The purpose of this study is to establish whether texture analysis and densitometry are complementary quantitative measures of chronic obstructive pulmonary disease (COPD) in a lung cancer screening setting. This was a retrospective study of data collected prospectively (in 2004-2010) in the Danish Lung Cancer Screening Trial. The texture score, relative area of emphysema, and percentile density were computed for 1915 baseline low-dose lung CT scans and were evaluated, both individually and in combination, for associations with lung function (i.e., forced expiratory volume in 1 second as a percentage of predicted normal [FEV% predicted]), diagnosis of mild to severe COPD, and prediction of a rapid decline in lung function. Multivariate linear regression models with lung function as the outcome were compared using the likelihood ratio test or the Vuong test, and AUC values for diagnostic and prognostic capabilities were compared using the DeLong test. Texture showed a significantly stronger association with lung function ( < 0.001 vs densitometric measures), a significantly higher diagnostic AUC value (for COPD, 0.696; for Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 1, 0.648; for GOLD grade 2, 0.768; and for GOLD grade 3, 0.944; < 0.001 vs densitometric measures), and a higher but not significantly different association with lung function decline. In addition, only texture could predict a rapid decline in lung function (AUC value, 0.538; < 0.05 vs random guessing). The combination of texture and both densitometric measures strengthened the association with lung function and decline in lung function ( < 0.001 and < 0.05, respectively, vs texture) but did not improve diagnostic or prognostic performance. The present study highlights texture as a promising quantitative CT measure of COPD to use alongside, or even instead of, densitometric measures. Moreover, texture may allow early detection of COPD in subjects who undergo lung cancer screening.

摘要

本研究旨在确定纹理分析和密度测定是否为肺癌筛查环境中慢性阻塞性肺疾病(COPD)的补充定量测量方法。这是一项回顾性研究,对丹麦肺癌筛查试验中前瞻性收集的数据(2004-2010 年)进行了研究。为 1915 例基线低剂量肺部 CT 扫描计算了纹理评分、相对肺气肿面积和百分位数密度,并分别评估了它们与肺功能(即 1 秒用力呼气量占预计正常值的百分比[FEV%预计值])、轻度至重度 COPD 的诊断以及肺功能快速下降的预测的相关性。使用似然比检验或 Vuong 检验比较了以肺功能为结局的多变量线性回归模型,使用 DeLong 检验比较了诊断和预后能力的 AUC 值。纹理与肺功能的相关性明显更强(<0.001 与密度测定),诊断 AUC 值明显更高(COPD 为 0.696;GOLD 分级 1 为 0.648;GOLD 分级 2 为 0.768;GOLD 分级 3 为 0.944;<0.001 与密度测定),与肺功能下降的相关性更高但不显著。此外,只有纹理可以预测肺功能的快速下降(AUC 值为 0.538;<0.05 与随机猜测)。纹理与两种密度测定的组合均增强了与肺功能和肺功能下降的相关性(<0.001 和 <0.05,分别与纹理相比),但并未改善诊断或预后性能。本研究强调了纹理作为一种有前途的 COPD 定量 CT 测量方法,可以与密度测定联合使用,甚至替代密度测定。此外,纹理可能允许在接受肺癌筛查的受试者中早期检测 COPD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验