Gaudêncio Andreia S, Vaz Pedro G, Hilal Mirvana, Mahé Guillaume, Lederlin Mathieu, Humeau-Heurtier Anne, Cardoso João M
LIBPhys-UC, Department of Physics, University of Coimbra, Coimbra, 3004-516, Portugal.
Univ Angers, LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes, 62 Avenue Notre-Dame du Lac, Angers, 49000, France.
Biomed Signal Process Control. 2021 Jul;68:102582. doi: 10.1016/j.bspc.2021.102582. Epub 2021 Apr 1.
Radiologists, and doctors in general, need relevant information for the quantification and characterization of pulmonary structures damaged by severe diseases, such as the Coronavirus disease 2019 (COVID-19). Texture-based analysis in scope of other pulmonary diseases has been used to screen, monitor, and provide valuable information for several kinds of diagnoses. To differentiate COVID-19 patients from healthy subjects and patients with other pulmonary diseases is crucial. Our goal is to quantify lung modifications in two pulmonary pathologies: COVID-19 and idiopathic pulmonary fibrosis (IPF). For this purpose, we propose the use of a three-dimensional multiscale fuzzy entropy (MFE3D) algorithm. The three groups tested (COVID-19 patients, IPF, and healthy subjects) were found to be statistically different for 9 scale factors ( ). A complexity index (CI) based on the sum of entropy values is used to classify healthy subjects and COVID-19 patients showing an accuracy of , a sensitivity of , and a specificity of . Moreover, 4 different machine-learning models were also used to classify the same COVID-19 dataset for comparison purposes.
放射科医生以及一般的医生,都需要相关信息来对诸如2019冠状病毒病(COVID - 19)等严重疾病所损害的肺部结构进行量化和特征描述。在其他肺部疾病范畴内基于纹理的分析已被用于筛查、监测,并为多种诊断提供有价值的信息。区分COVID - 19患者与健康受试者以及患有其他肺部疾病的患者至关重要。我们的目标是量化两种肺部疾病中的肺部改变:COVID - 19和特发性肺纤维化(IPF)。为此,我们提议使用三维多尺度模糊熵(MFE3D)算法。所测试的三组(COVID - 19患者、IPF患者和健康受试者)在9个尺度因子( )上被发现存在统计学差异。基于熵值总和的复杂度指数(CI)被用于对健康受试者和COVID - 19患者进行分类,其准确率为 ,敏感度为 ,特异性为 。此外,还使用了4种不同的机器学习模型对同一COVID - 19数据集进行分类以作比较。