Suppr超能文献

CoSnTe的实验与计算相界映射

Experimental and computational phase boundary mapping of CoSnTe.

作者信息

Crawford Caitlin M, Ortiz Brenden R, Gorai Prashun, Stevanovic Vladan, Toberer Eric S

机构信息

Physics, Colorado School of Mines, Golden, CO, USA.

Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, USA.

出版信息

J Mater Chem A Mater. 2020 Feb 14;6:24175-24185. doi: 10.1039/C8TA07539E. Epub 2018 Oct 31.

Abstract

Binary CoSb skutterudite (also known as CoSb) has been extensively studied; however, its mixed-anion counterparts remain largely unexplored in terms of their phase stability and thermoelectric properties. In the search for complex anionic analogs of the binary skutterudite, we begin by investigating the CoSb-CoSnTe pseudo-binary phase diagram. We observe no quaternary skutterudite phases and as such, focus our investigations on the ternary CoSnTe experimental phase boundary mapping, transport measurements, and first-principles calculations. Phase boundary mapping using traditional bulk syntheses reveals that the CoSnTe exhibits electronic properties ranging from a degenerate p-type behavior to an intrinsic behavior. Under Sn-rich conditions, Hall measurements indicate degenerate p-type carrier concentrations and high hole mobility. The acceptor defect Sn, and donor defects Te and Co are the predominant defects and rationally correspond to regions of high Sn, Te, and Co, respectively. Consideration of the defect energetics indicates that p-type extrinsic doping is plausible; however, Sn is likely a killer defect that limits n-type dopability. We find that the hole carrier concentration in CoSnTe can be further optimized by extrinsic p-type doping under Sn-rich growth conditions.

摘要

二元CoSb方钴矿(也称为CoSb)已得到广泛研究;然而,其混合阴离子对应物在相稳定性和热电性能方面仍基本未被探索。在寻找二元方钴矿的复杂阴离子类似物时,我们首先研究CoSb-CoSnTe伪二元相图。我们未观察到四元方钴矿相,因此,我们将研究重点放在三元CoSnTe的实验相边界映射、输运测量和第一性原理计算上。使用传统体相合成法进行的相边界映射表明,CoSnTe的电子性质范围从简并p型行为到本征行为。在富Sn条件下,霍尔测量表明存在简并p型载流子浓度和高空穴迁移率。受主缺陷Sn以及施主缺陷Te和Co是主要缺陷,分别合理对应于高Sn、Te和Co的区域。对缺陷能量学的考虑表明p型非本征掺杂是可行的;然而,Sn可能是限制n型掺杂能力的致命缺陷。我们发现,在富Sn生长条件下通过非本征p型掺杂可进一步优化CoSnTe中的空穴载流子浓度。

相似文献

1
Experimental and computational phase boundary mapping of CoSnTe.
J Mater Chem A Mater. 2020 Feb 14;6:24175-24185. doi: 10.1039/C8TA07539E. Epub 2018 Oct 31.
2
The importance of phase equilibrium for doping efficiency: iodine doped PbTe.
Mater Horiz. 2019 Aug 12;6(7):1444-1453. doi: 10.1039/c9mh00294d.
3
Native Atomic Defects Manipulation for Enhancing the Electronic Transport Properties of Epitaxial SnTe Films.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56446-56455. doi: 10.1021/acsami.1c15447. Epub 2021 Nov 17.
4
Ag Vacancies as "Killer-Defects" in CaAgSb Thermoelectrics.
ACS Appl Energy Mater. 2025 Feb 11;8(4):2318-2327. doi: 10.1021/acsaem.4c02907. eCollection 2025 Feb 24.
5
Synthesis Optimization and Thermoelectric Properties of S-Filled and Te-Se Double-Substituted Skutterudite under High Pressure.
Inorg Chem. 2022 May 30;61(21):8144-8152. doi: 10.1021/acs.inorgchem.2c00376. Epub 2022 May 16.
8
Transport properties of polycrystalline SnTe prepared by saturation annealing.
RSC Adv. 2020 Feb 6;10(10):5996-6005. doi: 10.1039/c9ra10841f. eCollection 2020 Feb 4.
9
Binary and Ternary Colloidal Cu-Sn-Te Nanocrystals for Thermoelectric Thin Films.
Small. 2021 Mar;17(11):e2006729. doi: 10.1002/smll.202006729. Epub 2021 Feb 24.
10
Phases and thermoelectric properties of SnTe with (Ge, Mn) co-doping.
Phys Chem Chem Phys. 2017 Nov 1;19(42):28749-28755. doi: 10.1039/c7cp04931e.

引用本文的文献

2
Probing Efficient N-Type Lanthanide Dopants for MgSb Thermoelectrics.
Adv Sci (Weinh). 2020 Nov 13;7(24):2002867. doi: 10.1002/advs.202002867. eCollection 2020 Dec.
3
Revelation of Inherently High Mobility Enables MgSb as a Sustainable Alternative to n-BiTe Thermoelectrics.
Adv Sci (Weinh). 2019 Jul 13;6(16):1802286. doi: 10.1002/advs.201802286. eCollection 2019 Aug 21.

本文引用的文献

1
2
Thermoelectric properties of Bi-added Co4Sb12 skutterudites.
J Phys Condens Matter. 2013 Mar 13;25(10):105701. doi: 10.1088/0953-8984/25/10/105701. Epub 2013 Feb 8.
3
Measurement of the electrical resistivity and Hall coefficient at high temperatures.
Rev Sci Instrum. 2012 Dec;83(12):123902. doi: 10.1063/1.4770124.
4
5
Complex thermoelectric materials.
Nat Mater. 2008 Feb;7(2):105-14. doi: 10.1038/nmat2090.
6
Generalized Gradient Approximation Made Simple.
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865.
7
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186. doi: 10.1103/physrevb.54.11169.
8
Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials.
Science. 1996 May 31;272(5266):1325-8. doi: 10.1126/science.272.5266.1325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验