Suppr超能文献

对比SnTe-NaSbTe和SnTe-NaBiTe热电合金:阳离子空位增加和晶格软化促进高性能

Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening.

作者信息

Slade Tyler J, Pal Koushik, Grovogui Jann A, Bailey Trevor P, Male James, Khoury Jason F, Zhou Xiuquan, Chung Duck Young, Snyder G Jeffrey, Uher Ctirad, Dravid Vinayak P, Wolverton Chris, Kanatzidis Mercouri G

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2020 Jul 15;142(28):12524-12535. doi: 10.1021/jacs.0c05650. Epub 2020 Jul 6.

Abstract

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe and NaBiTe (NaSnSbTe and NaSnBiTe, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe, but not NaBiTe, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe and NaBiTe facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnBiTe is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnSbTe however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnSbTe reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZT of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

摘要

缺陷化学对于设计高性能热电材料至关重要。在SnTe中,阳离子空位的自然密度较大,导致空穴过度掺杂,并阻碍了控制热电性能的能力。然而,最近的研究工作也将这些空位与声速抑制和低晶格热导率联系起来,凸显了理解合金化、空位以及SnTe输运性质之间相互作用的必要性。在此,我们报道了SnTe与NaSbTe和NaBiTe(分别为NaSnSbTe和NaSnBiTe)的固溶体,并着重研究三元合金对阳离子空位和热电性能的影响。我们发现,将NaSbTe而非NaBiTe引入SnTe中,几乎使Sn空位的自然浓度增加了一倍。此外,密度泛函理论计算表明,NaSbTe和NaBiTe都促进了价带收敛,同时缩小了带隙。这些效应提高了功率因子,但也使合金更容易发生有害的双极扩散。实际上,NaSnBiTe的性能受到强烈双极输运的限制,在900 K时仅表现出适度的最大ZT值≈0.85。然而,在NaSnSbTe中,空位浓度的翻倍提高了载流子密度并抑制了双极扩散,从而产生了比含Bi类似物更高的功率因子。最后,掺入NaSbTe降低了SnTe的声速,使其具有类似玻璃的晶格热导率。在带收敛、空位增加的空穴浓度和晶格软化的有利影响下,NaSnSbTe在800 - 900 K时达到高ZT≈1.2,在300 - 873 K范围内具有0.7的有竞争力的平均ZT值。两种化学性质相似的化合物在ZT值上的差异凸显了本征缺陷在设计高性能热电材料中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验