Suppr超能文献

人工智能:妇产科学研究与临床实践的新范式

Artificial Intelligence: A New Paradigm in Obstetrics and Gynecology Research and Clinical Practice.

作者信息

Iftikhar Pulwasha, Kuijpers Marcela V, Khayyat Azadeh, Iftikhar Aqsa, DeGouvia De Sa Maribel

机构信息

Obstetrics and Gynecology, St. John's University, New York, USA.

Obstetrics and Gynecology, Universidad de Ciencias Medicas, San José, CRI.

出版信息

Cureus. 2020 Feb 28;12(2):e7124. doi: 10.7759/cureus.7124.

Abstract

Artificial intelligence (AI) is growing exponentially in various fields, including medicine. This paper reviews the pertinent aspects of AI in obstetrics and gynecology (OB/GYN) and how these can be applied to improve patient outcomes and reduce the healthcare costs and workload for clinicians. Herein, we will address current AI uses in OB/GYN, and the use of AI as a tool to interpret fetal heart rate (FHR) and cardiotocography (CTG) to aid in the detection of preterm labor, pregnancy complications, and review discrepancies in its interpretation between clinicians to reduce maternal and infant morbidity and mortality. AI systems can be used as tools to create algorithms identifying asymptomatic women with short cervical length who are at risk of preterm birth. Additionally, the benefits of using the vast data capacity of AI storage can assist in determining the risk factors for preterm labor using multiomics and extensive genomic data. In the field of gynecological surgery, the use of augmented reality helps surgeons detect vital structures, thus decreasing complications, reducing operative time, and helping surgeons in training to practice in a realistic setting. Using three-dimensional (3D) printers can provide materials that mimic real tissues and also helps trainees to practice on a realistic model. Furthermore, 3D imaging allows better depth perception than its two-dimensional (2D) counterpart, allowing the surgeon to create preoperative plans according to tissue depth and dimensions. Although AI has some limitations, this new technology can improve the prognosis and management of patients, reduce healthcare costs, and help OB/GYN practitioners to reduce their workload and increase their efficiency and accuracy by incorporating AI systems into their daily practice. AI has the potential to guide practitioners in decision-making, reaching a diagnosis, and improving case management. It can reduce healthcare costs by decreasing medical errors and providing more dependable predictions. AI systems can accurately provide information on the large array of patients in clinical settings, although more robust data is required.

摘要

人工智能(AI)在包括医学在内的各个领域都呈指数级增长。本文回顾了人工智能在妇产科(OB/GYN)中的相关方面,以及如何应用这些方面来改善患者预后、降低医疗成本并减轻临床医生的工作量。在此,我们将探讨人工智能目前在妇产科中的应用,以及将人工智能作为一种工具来解读胎儿心率(FHR)和宫缩图(CTG),以协助检测早产、妊娠并发症,并审视临床医生之间在解读上的差异,从而降低母婴发病率和死亡率。人工智能系统可用作创建算法的工具,以识别宫颈长度短且有早产风险的无症状女性。此外,利用人工智能存储的大量数据的优势,有助于通过多组学和广泛的基因组数据来确定早产的风险因素。在妇科手术领域,增强现实技术的应用有助于外科医生检测重要结构,从而减少并发症、缩短手术时间,并帮助实习外科医生在逼真的环境中进行练习。使用三维(3D)打印机可以提供模拟真实组织的材料,也有助于学员在逼真的模型上进行练习。此外,3D成像比二维(2D)成像具有更好的深度感知,使外科医生能够根据组织深度和尺寸制定术前计划。尽管人工智能存在一些局限性,但这项新技术可以改善患者的预后和管理,降低医疗成本,并通过将人工智能系统纳入日常实践,帮助妇产科医生减轻工作量,提高效率和准确性。人工智能有潜力在决策、诊断和改善病例管理方面为从业者提供指导。它可以通过减少医疗错误和提供更可靠的预测来降低医疗成本。人工智能系统可以准确地提供临床环境中大量患者的信息,尽管还需要更强大的数据。

相似文献

3
Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics.
Technol Health Care. 2024;32(3):1273-1287. doi: 10.3233/THC-231482.
4
A Comprehensive Review of the Role of Artificial Intelligence in Obstetrics and Gynecology.
Cureus. 2023 Feb 12;15(2):e34891. doi: 10.7759/cureus.34891. eCollection 2023 Feb.
5
Artificial Intelligence in Obstetrics and Gynecology: Transforming Care and Outcomes.
Cureus. 2024 Jul 17;16(7):e64725. doi: 10.7759/cureus.64725. eCollection 2024 Jul.
6
Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology.
Ultrasound Obstet Gynecol. 2020 Oct;56(4):498-505. doi: 10.1002/uog.22122.
8
Smart Smile: Revolutionizing Dentistry With Artificial Intelligence.
Cureus. 2023 Jun 30;15(6):e41227. doi: 10.7759/cureus.41227. eCollection 2023 Jun.
9
Exploring the potential of machine learning in gynecological care: a review.
Arch Gynecol Obstet. 2024 Jun;309(6):2347-2365. doi: 10.1007/s00404-024-07479-1. Epub 2024 Apr 16.
10
Artificial intelligence and machine learning in cardiotocography: A scoping review.
Eur J Obstet Gynecol Reprod Biol. 2023 Feb;281:54-62. doi: 10.1016/j.ejogrb.2022.12.008. Epub 2022 Dec 9.

引用本文的文献

1
Exploring Urinary Tract Injuries in Gynecological Surgery: Current Insights and Future Directions.
Healthcare (Basel). 2025 Jul 23;13(15):1780. doi: 10.3390/healthcare13151780.
8
Advanced imaging techniques and artificial intelligence in pleural diseases: a narrative review.
Eur Respir Rev. 2025 Apr 2;34(176). doi: 10.1183/16000617.0263-2024. Print 2025 Apr.
9
Informatics Interventions for Maternal Morbidity: Scoping Review.
Interact J Med Res. 2025 Mar 25;14:e64826. doi: 10.2196/64826.
10
Leveraging artificial intelligence for inclusive maternity care: Enhancing access for mothers with disabilities in Africa.
Womens Health (Lond). 2025 Jan-Dec;21:17455057251326675. doi: 10.1177/17455057251326675. Epub 2025 Mar 16.

本文引用的文献

1
Artificial intelligence and augmented reality in gynecology.
Curr Opin Obstet Gynecol. 2019 Oct;31(5):345-348. doi: 10.1097/GCO.0000000000000559.
2
Artificial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants.
J Korean Med Sci. 2019 Apr 29;34(16):e128. doi: 10.3346/jkms.2019.34.e128.
3
Governance of automated image analysis and artificial intelligence analytics in healthcare.
Clin Radiol. 2019 May;74(5):329-337. doi: 10.1016/j.crad.2019.02.005. Epub 2019 Mar 19.
6
Artificial Intelligence: The Future of Obstetrics and Gynecology.
J Obstet Gynaecol India. 2018 Aug;68(4):326-327. doi: 10.1007/s13224-018-1118-4. Epub 2018 Apr 10.
8
AI researchers embrace Bitcoin technology to share medical data.
Nature. 2018 Mar 15;555(7696):293-294. doi: 10.1038/d41586-018-02641-7.
9
Implementing Machine Learning in Health Care - Addressing Ethical Challenges.
N Engl J Med. 2018 Mar 15;378(11):981-983. doi: 10.1056/NEJMp1714229.
10
Big Data and Machine Learning in Health Care.
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验