Suppr超能文献

基于石墨烯的双电层体系中层间库仑拖拽中的量子干涉效应的特征。

Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems.

机构信息

CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Nat Commun. 2023 Mar 16;14(1):1465. doi: 10.1038/s41467-023-37197-2.

Abstract

The distinguishing feature of a quantum system is interference arising from the wave mechanical nature of particles which is clearly central to macroscopic electronic properties. Here, we report the signature of quantum interference effect in inter-layer transport process. Via systematic magneto-drag experiments on graphene-based electronic double-layer systems, we observe low-field correction to the Coulomb-scattering-dominated inter-layer drag resistance in a wide range of temperature and carrier density, with its characteristics sensitive to the band topology of graphene layers. These observations can be attributed to a new type of quantum interference between drag processes, with the interference pathway comprising different carrier diffusion paths in the two constituent conductors. The emergence of such effect relies on the formation of superimposing planar diffusion paths, among which the impurity potentials from intermediate insulating spacer play an essential role. Our findings establish an ideal platform where the interplay between quantum interference and many-body interaction is essential.

摘要

量子系统的一个显著特征是由于粒子的波动性质而产生的干涉,这显然是宏观电子性质的核心。在这里,我们报告了在层间输运过程中量子干涉效应的特征。通过对基于石墨烯的电子双层系统的系统磁阻实验,我们在很宽的温度和载流子密度范围内观察到了库仑散射主导的层间磁阻的低场修正,其特性对石墨烯层的能带拓扑敏感。这些观察结果可以归因于拖曳过程之间的一种新型量子干涉,其干涉途径包括两个组成导体中不同的载流子扩散路径。这种效应的出现依赖于叠加平面扩散路径的形成,其中中间绝缘间隔的杂质势起着至关重要的作用。我们的发现建立了一个理想的平台,其中量子干涉和多体相互作用的相互作用是必不可少的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baff/10020572/7f1a8451f8ec/41467_2023_37197_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验