文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医疗保健中的机器智能——关于可信度、可解释性、可用性和透明度的观点

Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency.

作者信息

Cutillo Christine M, Sharma Karlie R, Foschini Luca, Kundu Shinjini, Mackintosh Maxine, Mandl Kenneth D

机构信息

1National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA.

2Evidation Health Inc., San Mateo, CA USA.

出版信息

NPJ Digit Med. 2020 Mar 26;3:47. doi: 10.1038/s41746-020-0254-2. eCollection 2020.


DOI:10.1038/s41746-020-0254-2
PMID:32258429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7099019/
Abstract

Machine Intelligence (MI) is rapidly becoming an important approach across biomedical discovery, clinical research, medical diagnostics/devices, and precision medicine. Such tools can uncover new possibilities for researchers, physicians, and patients, allowing them to make more informed decisions and achieve better outcomes. When deployed in healthcare settings, these approaches have the potential to enhance efficiency and effectiveness of the health research and care ecosystem, and ultimately improve quality of patient care. In response to the increased use of MI in healthcare, and issues associated when applying such approaches to clinical care settings, the National Institutes of Health (NIH) and National Center for Advancing Translational Sciences (NCATS) co-hosted a Machine Intelligence in Healthcare workshop with the National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) on 12 July 2019. Speakers and attendees included researchers, clinicians and patients/ patient advocates, with representation from industry, academia, and federal agencies. A number of issues were addressed, including: data quality and quantity; access and use of electronic health records (EHRs); transparency and explainability of the system in contrast to the entire clinical workflow; and the impact of bias on system outputs, among other topics. This whitepaper reports on key issues associated with MI specific to applications in the healthcare field, identifies areas of improvement for MI systems in the context of healthcare, and proposes avenues and solutions for these issues, with the aim of surfacing key areas that, if appropriately addressed, could accelerate progress in the field effectively, transparently, and ethically.

摘要

机器智能(MI)正迅速成为生物医学发现、临床研究、医学诊断/设备以及精准医疗等领域的重要方法。此类工具能够为研究人员、医生和患者揭示新的可能性,使他们能够做出更明智的决策并取得更好的结果。当应用于医疗保健环境时,这些方法有潜力提高健康研究和护理生态系统的效率和效果,并最终改善患者护理质量。为应对MI在医疗保健领域的使用增加以及将此类方法应用于临床护理环境时出现的相关问题,美国国立卫生研究院(NIH)和国家推进转化科学中心(NCATS)于2019年7月12日与美国国家癌症研究所(NCI)和国家生物医学成像与生物工程研究所(NIBIB)共同主办了一场医疗保健领域的机器智能研讨会。演讲者和与会者包括研究人员、临床医生以及患者/患者权益倡导者,来自行业、学术界和联邦机构。会议讨论了多个问题,包括:数据质量和数量;电子健康记录(EHR)的获取和使用;与整个临床工作流程相比系统的透明度和可解释性;以及偏差对系统输出的影响等其他主题。本白皮书报告了与医疗保健领域特定应用的MI相关的关键问题,确定了医疗保健背景下MI系统的改进领域,并针对这些问题提出了途径和解决方案,旨在揭示关键领域,若能适当解决这些领域的问题,可有效、透明且合乎道德地加速该领域的进展。

相似文献

[1]
Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency.

NPJ Digit Med. 2020-3-26

[2]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[3]
NIH workshop on clinical translation of molecular imaging probes and technology--meeting report.

Mol Imaging Biol. 2014-10

[4]

2018-7-24

[5]
Measuring hot flashes: summary of a National Institutes of Health workshop.

Mayo Clin Proc. 2004-6

[6]

2014-9

[7]
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

J Phys Condens Matter. 2008-2-13

[8]
American Society of Clinical Oncology policy statement: oversight of clinical research.

J Clin Oncol. 2003-6-15

[9]
Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication.

Int J Environ Res Public Health. 2022-7-8

[10]
Impact of patient access to their electronic health record: systematic review.

Inform Health Soc Care. 2021-6-2

引用本文的文献

[1]
Machine learning approaches in the therapeutic outcome prediction in major depressive disorder: a systematic review.

Front Psychiatry. 2025-8-13

[2]
Machine Learning in Myasthenia Gravis: A Systematic Review of Prognostic Models and AI-Assisted Clinical Assessments.

Diagnostics (Basel). 2025-8-14

[3]
Artificial intelligence and machine learning in spine care: Advancing precision diagnosis, treatment, and rehabilitation.

World J Orthop. 2025-8-18

[4]
Usability and adoption in a randomized trial of GutGPT a GenAI tool for gastrointestinal bleeding.

NPJ Digit Med. 2025-8-18

[5]
Improving Explainability and Integrability of Medical AI to Promote Health Care Professional Acceptance and Use: Mixed Systematic Review.

J Med Internet Res. 2025-8-7

[6]
Transforming Health in Developing Nations: Paving the Way for an Integrated Health System.

J Healthc Leadersh. 2025-7-14

[7]
Explainability in the age of large language models for healthcare.

Commun Eng. 2025-7-17

[8]
Evolving Zero Trust Architectures for AI-Driven Cyber Threats in Healthcare and Other High-Risk Data Environments: A Systematic Review.

Cureus. 2025-6-5

[9]
Expert consensus on feasibility and application of automatic pain assessment in routine clinical use.

J Anesth Analg Crit Care. 2025-6-2

[10]
Implementing an Automated Prediction Model to Improve Prescribing of HIV Preexposure Prophylaxis.

NEJM Catal Innov Care Deliv. 2023-11

本文引用的文献

[1]
Dissecting racial bias in an algorithm used to manage the health of populations.

Science. 2019-10-25

[2]
Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed.

Nat Med. 2019-10

[3]
Why digital medicine depends on interoperability.

NPJ Digit Med. 2019-8-20

[4]
Putting the data before the algorithm in big data addressing personalized healthcare.

NPJ Digit Med. 2019-8-19

[5]
Do no harm: a roadmap for responsible machine learning for health care.

Nat Med. 2019-8-19

[6]
Making Machine Learning Models Clinically Useful.

JAMA. 2019-10-8

[7]
The reproducibility crisis in the age of digital medicine.

NPJ Digit Med. 2019-1-29

[8]
Assessing Postconcussive Reaction Time Using Transport-Based Morphometry of Diffusion Tensor Images.

AJNR Am J Neuroradiol. 2019-6-13

[9]
The proof of the pudding: in praise of a culture of real-world validation for medical artificial intelligence.

Ann Transl Med. 2019-4

[10]
Adversarial attacks on medical machine learning.

Science. 2019-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索