Suppr超能文献

实施自动化预测模型以改善HIV暴露前预防用药处方

Implementing an Automated Prediction Model to Improve Prescribing of HIV Preexposure Prophylaxis.

作者信息

Krakower Douglas S, Lieberman Michael, Marino Miguel, Hwang Jun, Mayer Kenneth H, Marcus Julia L

机构信息

Attending Physician, Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Associate Professor of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Research Scientist, The Fenway Institute at Fenway Health, Boston, Massachusetts, USA.

Medical Director, Population Health, OCHIN, Portland, Oregon, USA; Associate Professor, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

NEJM Catal Innov Care Deliv. 2023 Nov;4(11). doi: 10.1056/CAT.23.0215. Epub 2023 Oct 18.

Abstract

Antiretroviral preexposure prophylaxis (PrEP) is nearly 100% effective at decreasing HIV acquisition but is underused in priority populations. Primary care clinicians need tools to help them identify persons likely to benefit from PrEP use and prescribe it when appropriate. The researchers developed and validated an automated decision support tool with interactive alerts in the electronic health record to increase PrEP discussions and prescribing in primary care. They piloted the tool at three federally qualified health centers and assessed feasibility, acceptance by clinicians, and preliminary impact on PrEP care. Of 33,803 patients who visited the pilot clinics from July 2022 through January 2023, providers received PrEP alerts at the point of care for 2.2% of patients, demonstrating feasibility. Although numbers of PrEP prescriptions remained low, the proportion of all patients with new PrEP prescriptions was 4.5 times higher at pilot clinics compared with matched control clinics (0.09% vs. 0.02%). Implementation of the decision support tool was associated with a statistically nonsignificant 5.5% increase in HIV tests per 100 patients. In qualitative interviews, providers said the tool facilitated PrEP discussions with patients, particularly for those patients who would not have initiated discussions because of stigma. The researchers found that acceptance, use, and impact of machine-learning models for PrEP depends on collaborating with and building trust among providers, including blending a data-driven approach to identifying patients at increased risk for HIV acquisition with providers' traditional decision-making framework. These approaches could be useful for health care organizations seeking to implement automated prediction models across all areas of medicine.

摘要

抗逆转录病毒暴露前预防(PrEP)在降低HIV感染方面的有效性接近100%,但在重点人群中的使用不足。初级保健临床医生需要工具来帮助他们识别可能从PrEP使用中获益的人群,并在适当的时候开具PrEP处方。研究人员开发并验证了一种电子健康记录中带有交互式警报的自动化决策支持工具,以增加初级保健中关于PrEP的讨论和处方开具。他们在三个联邦合格的健康中心对该工具进行了试点,并评估了其可行性、临床医生的接受度以及对PrEP护理的初步影响。在2022年7月至2023年1月期间就诊于试点诊所的33803名患者中,医护人员在2.2%的患者的护理点收到了PrEP警报,证明了其可行性。尽管PrEP处方数量仍然较低,但与匹配的对照诊所相比,试点诊所所有新开具PrEP处方的患者比例高出4.5倍(0.09%对0.02%)。决策支持工具的实施与每100名患者中HIV检测数量在统计学上无显著意义的5.5%的增加相关。在定性访谈中,医护人员表示该工具促进了与患者关于PrEP的讨论,特别是对于那些因耻辱感而不会主动发起讨论的患者。研究人员发现,用于PrEP的机器学习模型的接受度、使用情况和影响取决于与医护人员合作并建立信任,包括将数据驱动的方法与识别HIV感染风险增加的患者与医护人员的传统决策框架相结合。这些方法可能对寻求在医学各个领域实施自动化预测模型的医疗保健组织有用。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验