Suppr超能文献

用于视觉辅助惯性导航的鲁棒离群值自适应滤波

Robust Outlier-Adaptive Filtering for Vision-Aided Inertial Navigation.

作者信息

Lee Kyuman, Johnson Eric N

机构信息

School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30313, USA.

Faculty of Aerospace Engineering, The Pennsylvania State University, 229 Hammond Building, University Park, PA 16802, USA.

出版信息

Sensors (Basel). 2020 Apr 4;20(7):2036. doi: 10.3390/s20072036.

Abstract

With the advent of unmanned aerial vehicles (UAVs), a major area of interest in the research field of UAVs has been vision-aided inertial navigation systems (V-INS). In the front-end of V-INS, image processing extracts information about the surrounding environment and determines features or points of interest. With the extracted vision data and inertial measurement unit (IMU) dead reckoning, the most widely used algorithm for estimating vehicle and feature states in the back-end of V-INS is an extended Kalman filter (EKF). An important assumption of the EKF is Gaussian white noise. In fact, measurement outliers that arise in various realistic conditions are often non-Gaussian. A lack of compensation for unknown noise parameters often leads to a serious impact on the reliability and robustness of these navigation systems. To compensate for uncertainties of the outliers, we require modified versions of the estimator or the incorporation of other techniques into the filter. The main purpose of this paper is to develop accurate and robust V-INS for UAVs, in particular, those for situations pertaining to such unknown outliers. Feature correspondence in image processing front-end rejects vision outliers, and then a statistic test in filtering back-end detects the remaining outliers of the vision data. For frequent outliers occurrence, variational approximation for Bayesian inference derives a way to compute the optimal noise precision matrices of the measurement outliers. The overall process of outlier removal and adaptation is referred to here as "outlier-adaptive filtering". Even though almost all approaches of V-INS remove outliers by some method, few researchers have treated outlier adaptation in V-INS in much detail. Here, results from flight datasets validate the improved accuracy of V-INS employing the proposed outlier-adaptive filtering framework.

摘要

随着无人机(UAV)的出现,无人机研究领域一个主要的关注领域是视觉辅助惯性导航系统(V-INS)。在V-INS的前端,图像处理提取有关周围环境的信息并确定特征或感兴趣的点。利用提取的视觉数据和惯性测量单元(IMU)的航位推算,在V-INS后端用于估计飞行器和特征状态的最广泛使用的算法是扩展卡尔曼滤波器(EKF)。EKF的一个重要假设是高斯白噪声。实际上,在各种现实条件下出现的测量异常值通常是非高斯的。对未知噪声参数缺乏补偿常常会对这些导航系统的可靠性和鲁棒性产生严重影响。为了补偿异常值的不确定性,我们需要估计器的修改版本或将其他技术纳入滤波器。本文的主要目的是为无人机开发准确且鲁棒的V-INS,特别是针对与这种未知异常值相关的情况。图像处理前端的特征匹配会剔除视觉异常值,然后滤波后端的统计检验会检测视觉数据中剩余的异常值。对于频繁出现的异常值,贝叶斯推理的变分近似推导出一种计算测量异常值的最优噪声精度矩阵的方法。这里将去除异常值和自适应调整的整个过程称为“异常值自适应滤波”。尽管几乎所有V-INS方法都通过某种方法去除异常值,但很少有研究人员详细探讨V-INS中的异常值自适应调整。在此,飞行数据集的结果验证了采用所提出的异常值自适应滤波框架的V-INS的精度提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce91/7181286/a8cedec72c87/sensors-20-02036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验