Zilm M E, Staruch M, Jain M, Wei Mei
Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, CT 06268, USA.
J Mater Chem B. 2014 Nov 7;2(41):7176-7185. doi: 10.1039/c4tb00925h. Epub 2014 Sep 17.
Many magnetic materials lack intrinsic biocompatibility and require surface functionalization for in vivo applications. In this study, we fabricated an intrinsically biocompatible, biodegradable magnetic material through iron substitution into hydroxyapatite (FeHA) via ion-exchange. Controlling the oxidation state of iron in the ion exchange solution resulted in 'tunable' magnetic properties. Superparamagnetic behavior was observed in FeHA and FeHA and paramagnetism in FeHA. FeHA powders were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS) with no detection of iron oxide phases. The as-synthesized HA and FeHA samples were characterized in vitro using MC3T3-E1 cells. Cellular proliferation of FeHA was found comparable to HA, while our cytotoxicity results from a lactate dehydrogenase assay showed FeHA to be less toxic than pure HA, a widely used implantable biomaterial. Thus, these results collectively suggest that we have fabricated a magnetic biomaterial with intrinsic biocompatibility.
许多磁性材料缺乏内在的生物相容性,在体内应用时需要进行表面功能化处理。在本研究中,我们通过离子交换将铁取代羟基磷灰石(FeHA)制备了一种具有内在生物相容性和可生物降解性的磁性材料。控制离子交换溶液中铁的氧化态可产生“可调谐”的磁性。在FeHA中观察到超顺磁性行为,在FeHA中观察到顺磁性。使用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对FeHA粉末进行了表征,未检测到氧化铁相。使用MC3T3-E1细胞对合成的HA和FeHA样品进行了体外表征。发现FeHA的细胞增殖与HA相当,而我们通过乳酸脱氢酶测定得到的细胞毒性结果表明,FeHA的毒性低于广泛使用的可植入生物材料纯HA。因此,这些结果共同表明我们制备了一种具有内在生物相容性的磁性生物材料。