Mata Diogo, Oliveira Filipe J, Neto Miguel A, Belmonte Manuel, Bastos Alexandre C, Lopes Maria A, Gomes Pedro S, Fernandes Maria H, Silva Rui F
CICECO, Materials and Ceramic Eng. Dept., Univ. of Aveiro, 3810-193 Aveiro, Portugal.
J Mater Chem B. 2015 Mar 7;3(9):1831-1845. doi: 10.1039/c4tb01628a. Epub 2015 Jan 27.
Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, conductive CNT-based "smart" materials accumulate exciting grafting qualities for tuning the in vitro cellular phenotype. Biphasic electrical stimulation of human osteoblastic cells was performed in vitro on either dielectric bioactive bone grafts or conductive CNT-reinforced composites. The efficiency of the electrical stimuli delivery, as well as the effect of stimulation on cellular functions were investigated. Conductive substrates boosted the local culture medium conductivity and the confinement of the exogenous electrical fields. Hence, bone cell proliferation, DNA content and mRNA expression were maximized on the conductive substrates yielding superior stimuli delivering efficiency over dielectric ones. These findings are suggestive that bioactive bone grafts with electrical conductivity are capable of high spatial and temporal control of bone cell stimulation.
生物材料仍可被重新设计,以成为简单且通用的骨再生解决方案。按照这一路线图,基于碳纳米管的导电“智能”材料积累了令人兴奋的移植特性,可用于调节体外细胞表型。在体外对人成骨细胞进行双相电刺激,刺激对象为介电生物活性骨移植材料或导电碳纳米管增强复合材料。研究了电刺激传递的效率以及刺激对细胞功能的影响。导电基质提高了局部培养基的导电性以及外源电场的限制。因此,在导电基质上骨细胞增殖、DNA含量和mRNA表达达到最大值,产生了比介电基质更高的刺激传递效率。这些发现表明,具有导电性的生物活性骨移植材料能够对骨细胞刺激进行高度的空间和时间控制。