Suppr超能文献

转录表达模式的序贯分析提高了多种癌症的生存预测。

Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers.

机构信息

The Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Room, 5124, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.

The Hillman Cancer Center of The University of Pittsburgh Medical Center, UPMC, 5150 Centre Ave, Pittsburgh, PA, 15232, USA.

出版信息

BMC Cancer. 2020 Apr 7;20(1):297. doi: 10.1186/s12885-020-06756-x.

Abstract

BACKGROUND

Long-term survival in numerous cancers often correlates with specific whole transcriptome profiles or the expression patterns of smaller numbers of transcripts. In some instances, these are better predictors of survival than are standard classification methods such as clinical stage or hormone receptor status in breast cancer. Here, we have used the method of "t-distributed stochastic neighbor embedding" (t-SNE) to show that, collectively, the expression patterns of small numbers of functionally-related transcripts from fifteen cancer pathways correlate with long-term survival in the vast majority of tumor types from The Cancer Genome Atlas (TCGA). We then ask whether the sequential application of t-SNE using the transcripts from a second pathway improves predictive capability or whether t-SNE can be used to refine the initial predictive power of whole transcriptome profiling.

METHODS

RNAseq data from 10,227 tumors in TCGA were previously analyzed using t-SNE-based clustering of 362 transcripts comprising 15 distinct cancer-related pathways. After showing that certain clusters were associated with differential survival, each relevant cluster was re-analyzed by t-SNE with a second pathway's transcripts. Alternatively, groups with differential survival identified by whole transcriptome profiling were subject to a second, t-SNE-based analysis.

RESULTS

Sequential analyses employing either t-SNE➔t-SNE or whole transcriptome profiling➔t-SNE analyses were in many cases superior to either individual method at predicting long-term survival. We developed a dynamic and intuitive R Shiny web application to explore the t-SNE based transcriptome clustering and survival analysis across all TCGA cancers and all 15 cancer-related pathways in this analysis. This application provides a simple interface to select specific t-SNE clusters and analyze survival predictability using both individual or sequential approaches. The user can recreate the relationships described in this analysis and further explore many different cancer, pathway, and cluster combinations. Non-R users can access the application on the web at https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA. The application, R scripts performing survival analysis, and t-SNE clustering results of TCGA expression data can be accessed on GitHub enabling users to download and run the application locally with ease (https://github.com/RavulaPitt/Sequential-t-SNE/).

CONCLUSIONS

The long-term survival of patients correlated with expression patterns of 362 transcripts from 15 cancer-related pathways. In numerous cases, however, survival could be further improved when the cohorts were re-analyzed using iterative t-SNE clustering or when t-SNE clustering was applied to cohorts initially segregated by whole transcriptome-based hierarchical clustering.

摘要

背景

在许多癌症中,长期生存通常与特定的全转录组谱或少数转录本的表达模式相关。在某些情况下,这些比标准分类方法(如乳腺癌中的临床分期或激素受体状态)更好地预测生存。在这里,我们使用“t 分布随机邻域嵌入”(t-SNE)的方法来表明,来自 15 个癌症途径的少数功能相关转录本的表达模式与来自癌症基因组图谱(TCGA)的绝大多数肿瘤类型的长期生存相关。然后,我们询问使用第二个途径的转录本进行连续的 t-SNE 是否可以提高预测能力,或者 t-SNE 是否可以用于改进全转录组分析的初始预测能力。

方法

TCGA 中 10227 个肿瘤的 RNAseq 数据先前使用包含 15 个不同癌症相关途径的 362 个转录本的基于 t-SNE 的聚类进行了分析。在表明某些聚类与差异生存相关之后,每个相关聚类都通过第二个途径的转录本进行了重新分析 t-SNE。或者,通过全转录组分析鉴定出具有差异生存的组进行第二次基于 t-SNE 的分析。

结果

使用 t-SNE➔t-SNE 或全转录组分析➔t-SNE 分析的连续分析在许多情况下优于单独使用任何一种方法预测长期生存。我们开发了一个动态直观的 R Shiny 网络应用程序,以探索在本分析中所有 TCGA 癌症和所有 15 个癌症相关途径中的基于 t-SNE 的转录组聚类和生存分析。该应用程序提供了一个简单的界面,可用于选择特定的 t-SNE 聚类,并使用单个或连续方法分析生存预测能力。用户可以重现本文分析中描述的关系,并进一步探索许多不同的癌症、途径和聚类组合。非 R 用户可以在网络上访问该应用程序 https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA。TCGA 表达数据的生存分析 R 脚本和 t-SNE 聚类结果可在 GitHub 上访问,这使用户可以轻松下载并在本地运行该应用程序(https://github.com/RavulaPitt/Sequential-t-SNE/)。

结论

患者的长期生存与来自 15 个癌症相关途径的 362 个转录本的表达模式相关。然而,在许多情况下,当使用迭代 t-SNE 聚类重新分析队列或当将 t-SNE 聚类应用于最初基于全转录组分层聚类分离的队列时,生存情况可以进一步改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a9d/7140376/c957b0e3e428/12885_2020_6756_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验