Suppr超能文献

深微:基于微生物组数据的疾病预测的深度学习表示。

DeepMicro: deep representation learning for disease prediction based on microbiome data.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.

出版信息

Sci Rep. 2020 Apr 7;10(1):6026. doi: 10.1038/s41598-020-63159-5.

Abstract

Human microbiota plays a key role in human health and growing evidence supports the potential use of microbiome as a predictor of various diseases. However, the high-dimensionality of microbiome data, often in the order of hundreds of thousands, yet low sample sizes, poses great challenge for machine learning-based prediction algorithms. This imbalance induces the data to be highly sparse, preventing from learning a better prediction model. Also, there has been little work on deep learning applications to microbiome data with a rigorous evaluation scheme. To address these challenges, we propose DeepMicro, a deep representation learning framework allowing for an effective representation of microbiome profiles. DeepMicro successfully transforms high-dimensional microbiome data into a robust low-dimensional representation using various autoencoders and applies machine learning classification algorithms on the learned representation. In disease prediction, DeepMicro outperforms the current best approaches based on the strain-level marker profile in five different datasets. In addition, by significantly reducing the dimensionality of the marker profile, DeepMicro accelerates the model training and hyperparameter optimization procedure with 8X-30X speedup over the basic approach. DeepMicro is freely available at https://github.com/minoh0201/DeepMicro.

摘要

人体微生物组在人类健康中起着关键作用,越来越多的证据支持将微生物组作为各种疾病预测因子的潜在用途。然而,微生物组数据的高维度(通常为数十万)和低样本量对基于机器学习的预测算法构成了巨大挑战。这种不平衡导致数据高度稀疏,从而无法学习更好的预测模型。此外,对于具有严格评估方案的微生物组数据的深度学习应用,几乎没有相关工作。为了解决这些挑战,我们提出了 DeepMicro,这是一种深度表示学习框架,允许对微生物组谱进行有效表示。DeepMicro 使用各种自动编码器成功地将高维微生物组数据转换为稳健的低维表示,并在学习到的表示上应用机器学习分类算法。在疾病预测方面,DeepMicro 在五个不同的数据集上优于基于菌株水平标记谱的当前最佳方法。此外,通过显著降低标记谱的维数,DeepMicro 加速了模型训练和超参数优化过程,速度比基本方法快 8 倍至 30 倍。DeepMicro 可在 https://github.com/minoh0201/DeepMicro 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52e4/7138789/dc85964dfdc7/41598_2020_63159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验