Suppr超能文献

EnsDeepDP:一种通过宏基因组学进行疾病预测的集成深度学习方法。

EnsDeepDP: An Ensemble Deep Learning Approach for Disease Prediction Through Metagenomics.

作者信息

Shen Yang, Zhu Jinlin, Deng Zhaohong, Lu Wenwei, Wang Hongchao

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):986-998. doi: 10.1109/TCBB.2022.3201295. Epub 2023 Apr 3.

Abstract

A growing number of studies show that the human microbiome plays a vital role in human health and can be a crucial factor in predicting certain human diseases. However, microbiome data are often characterized by the limited samples and high-dimensional features, which pose a great challenge for machine learning methods. Therefore, this paper proposes a novel ensemble deep learning disease prediction method that combines unsupervised and supervised learning paradigms. First, unsupervised deep learning methods are used to learn the potential representation of the sample. Afterwards, the disease scoring strategy is developed based on the deep representations as the informative features for ensemble analysis. To ensure the optimal ensemble, a score selection mechanism is constructed, and performance boosting features are engaged with the original sample. Finally, the composite features are trained with gradient boosting classifier for health status decision. For case study, the ensemble deep learning flowchart has been demonstrated on six public datasets extracted from the human microbiome profiling. The results show that compared with the existing algorithms, our framework achieves better performance on disease prediction.

摘要

越来越多的研究表明,人类微生物组在人类健康中起着至关重要的作用,并且可能是预测某些人类疾病的关键因素。然而,微生物组数据通常具有样本有限和特征高维的特点,这给机器学习方法带来了巨大挑战。因此,本文提出了一种新颖的集成深度学习疾病预测方法,该方法结合了无监督和有监督学习范式。首先,使用无监督深度学习方法来学习样本的潜在表示。然后,基于深度表示开发疾病评分策略,作为用于集成分析的信息性特征。为确保最优集成,构建了分数选择机制,并将性能增强特征与原始样本相结合。最后,使用梯度提升分类器对复合特征进行训练,以做出健康状况决策。作为案例研究,在从人类微生物组分析中提取的六个公共数据集上展示了集成深度学习流程图。结果表明,与现有算法相比,我们的框架在疾病预测方面取得了更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验