Neklesova Margarita V, Sogomonyan Karine S, Golovkin Ivan A, Shirokiy Nikolay I, Vershinina Sofia O, Tsvetikova Sofia A, Korzhova Julia E, Zakharova Mariya N, Gnedovskaya Elena V
Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
Novabiom, 191119 St. Petersburg, Russia.
Biomedicines. 2025 Jul 23;13(8):1806. doi: 10.3390/biomedicines13081806.
: Gut dysbiosis has been implicated in multiple sclerosis (MS), but microbial signatures remain inconsistent across studies. Machine learning (ML) algorithms based on global microbiome data integration can reveal key disease-associated microbial biomarkers and new insights into MS pathogenesis. This study aimed to investigate gut microbial signatures associated with MS and to evaluate the potential of ML for diagnostic applications. : Fecal samples from 29 relapsing-remitting MS patients during exacerbation and 27 healthy controls were analyzed using 16S rRNA gene sequencing. Differential abundance analysis was performed, and data were integrated with 29 published studies. Four ML models were developed to distinguish MS-associated microbiome profiles. : MS patients exhibited reduced levels of Eubacteriales ( = 0.037), Lachnospirales ( = 0.021), ( = 0.013), ( = 0.012), ( = 0.018), ( = 0.004), and higher abundance of UCG-008 ( = 0.045) compared to healthy controls. The Light Gradient Boosting Machine classifier demonstrated the highest performance (accuracy: 0.88, AUC-ROC: 0.95) in distinguishing MS microbiome profiles from healthy controls. : This study highlights specific microbiome dysbiosis in MS patients and supports the potential of ML for diagnostic applications. Further research is needed to elucidate the mechanistic role of these microbial alterations in MS progression and their therapeutic utility.
肠道微生物群失调与多发性硬化症(MS)有关,但不同研究中的微生物特征仍不一致。基于全球微生物组数据整合的机器学习(ML)算法可以揭示关键的疾病相关微生物生物标志物以及对MS发病机制的新见解。本研究旨在调查与MS相关的肠道微生物特征,并评估ML在诊断应用中的潜力。
对29例复发缓解型MS患者病情加重期的粪便样本和27名健康对照者的粪便样本进行16S rRNA基因测序分析。进行差异丰度分析,并将数据与29项已发表的研究进行整合。开发了四种ML模型以区分与MS相关的微生物组谱。
与健康对照相比,MS患者的真杆菌目(=0.037)、毛螺菌目(=0.021)、(=0.013)、(=0.012)、(=0.018)、(=0.004)水平降低,而UCG-008(=0.045)丰度更高。在区分MS微生物组谱与健康对照方面,轻梯度提升机分类器表现出最高的性能(准确率:0.88,AUC-ROC:0.95)。
本研究突出了MS患者特定的微生物组失调,并支持ML在诊断应用中的潜力。需要进一步研究以阐明这些微生物改变在MS进展中的机制作用及其治疗效用。