Suppr超能文献

相似文献

1
Improving Docking Power for Short Peptides Using Random Forest.
J Chem Inf Model. 2021 Jun 28;61(6):3074-3090. doi: 10.1021/acs.jcim.1c00573. Epub 2021 Jun 14.
2
Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
J Chem Inf Model. 2020 Feb 24;60(2):667-683. doi: 10.1021/acs.jcim.9b00905. Epub 2020 Jan 27.
3
LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance.
J Chem Inf Model. 2016 Jan 25;56(1):188-200. doi: 10.1021/acs.jcim.5b00234. Epub 2016 Jan 11.
4
Docking small peptides remains a great challenge: an assessment using AutoDock Vina.
Brief Bioinform. 2015 Nov;16(6):1045-56. doi: 10.1093/bib/bbv008. Epub 2015 Apr 21.
6
Energy-based graph convolutional networks for scoring protein docking models.
Proteins. 2020 Aug;88(8):1091-1099. doi: 10.1002/prot.25888. Epub 2020 Mar 16.
7
Hierarchical Flexible Peptide Docking by Conformer Generation and Ensemble Docking of Peptides.
J Chem Inf Model. 2018 Jun 25;58(6):1292-1302. doi: 10.1021/acs.jcim.8b00142. Epub 2018 May 21.
9
LEADS-FRAG: A Benchmark Data Set for Assessment of Fragment Docking Performance.
J Chem Inf Model. 2020 Dec 28;60(12):6544-6554. doi: 10.1021/acs.jcim.0c00693. Epub 2020 Dec 8.
10
Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands.
J Comput Aided Mol Des. 2024 Oct 16;38(1):33. doi: 10.1007/s10822-024-00574-0.

引用本文的文献

1
Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches.
Int J Mol Sci. 2024 Nov 14;25(22):12233. doi: 10.3390/ijms252212233.
3
Machine Learning Methods for Small Data Challenges in Molecular Science.
Chem Rev. 2023 Jul 12;123(13):8736-8780. doi: 10.1021/acs.chemrev.3c00189. Epub 2023 Jun 29.
4
Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study.
J Pharm Anal. 2023 May;13(5):523-534. doi: 10.1016/j.jpha.2023.04.008. Epub 2023 Apr 15.
5
[Progress on the design and optimization of antimicrobial peptides].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1247-1253. doi: 10.7507/1001-5515.202206017.
6
Recent PELE Developments and Applications in Drug Discovery Campaigns.
Int J Mol Sci. 2022 Dec 17;23(24):16090. doi: 10.3390/ijms232416090.

本文引用的文献

1
The latest automated docking technologies for novel drug discovery.
Expert Opin Drug Discov. 2021 Jun;16(6):625-645. doi: 10.1080/17460441.2021.1858793. Epub 2020 Dec 23.
2
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
3
Comprehensive Evaluation of Fourteen Docking Programs on Protein-Peptide Complexes.
J Chem Theory Comput. 2020 Jun 9;16(6):3959-3969. doi: 10.1021/acs.jctc.9b01208. Epub 2020 May 6.
4
Improving Protein-Peptide Docking Results via Pose-Clustering and Rescoring with a Combined Knowledge-Based and MM-GBSA Scoring Function.
J Chem Inf Model. 2020 Apr 27;60(4):2377-2387. doi: 10.1021/acs.jcim.0c00058. Epub 2020 Apr 16.
5
Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set?
J Chem Inf Model. 2020 Mar 23;60(3):1122-1136. doi: 10.1021/acs.jcim.9b00714. Epub 2020 Mar 3.
6
7
Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
J Chem Inf Model. 2020 Feb 24;60(2):667-683. doi: 10.1021/acs.jcim.9b00905. Epub 2020 Jan 27.
8
PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking.
J Comput Chem. 2020 Feb 5;41(4):362-369. doi: 10.1002/jcc.26114. Epub 2019 Dec 2.
9
Learning from the ligand: using ligand-based features to improve binding affinity prediction.
Bioinformatics. 2020 Feb 1;36(3):758-764. doi: 10.1093/bioinformatics/btz665.
10
Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation.
J Chem Inf Model. 2019 Sep 23;59(9):3981-3988. doi: 10.1021/acs.jcim.9b00387. Epub 2019 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验