Hayes Andrew J, Satiaputra Jiulia, Sternicki Louise M, Paparella Ashleigh S, Feng Zikai, Lee Kwang J, Rodriguez Beatriz Blanco-, Tieu William, Eijkelkamp Bart A, Shearwin Keith E, Pukala Tara L, Abell Andrew D, Booker Grant W, Polyak Steven W
School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.
School of Physical Sciences, University of Adelaide, South Australia 5005, Australia.
Antibiotics (Basel). 2020 Apr 6;9(4):165. doi: 10.3390/antibiotics9040165.
Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant () In BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in .
生物素蛋白连接酶(BPL)抑制剂是一类新型抗菌剂,其靶向临床上重要的耐甲氧西林金黄色葡萄球菌(MRSA)。在金黄色葡萄球菌中,BPL是一种双功能蛋白,负责两种生物素依赖性酶的酶促生物素化,同时还作为转录阻遏物控制生物素的合成和导入。在本报告中,我们研究了一种强效抗BPL抗菌化合物生物素酰基磺酰胺腺苷(BASA)的作用机制和耐药性。我们表明,BASA的作用方式包括在体外抑制BPL的酶活性以及作为转录共阻遏物发挥作用。该化合物的自发耐药率较低(<10^-8),并且对在BASA存在下连续传代过程中进化的菌株进行全基因组测序,确定了两种不同的耐药机制。第一种机制是,有人提出缺失生物素依赖性酶丙酮酸羧化酶可优先将生物可利用的生物素用于必需酶乙酰辅酶A羧化酶。第二种机制是,BPL中的D200E错义突变降低了体外DNA结合和体内转录抑制。我们认为,这第二种耐药机制通过解除对生物素合成和导入的抑制来提高生物素的生物利用度,从而使游离生物素可能在与抑制剂竞争结合BPL方面占优势。这项研究为控制金黄色葡萄球菌中BPL抑制剂抗菌活性和耐药性的分子机制提供了新的见解。