Department of Chemistry, University of Adelaide, North Tce, Adelaide, SA 5005, Australia.
School of Biological Sciences, University of Adelaide, North Tce, Adelaide, SA 5005, Australia.
Antibiotics (Basel). 2016 Jul 25;5(3):26. doi: 10.3390/antibiotics5030026.
There is a desperate need for novel antibiotic classes to combat the rise of drug resistant pathogenic bacteria, such as Staphylococcus aureus. Inhibitors of the essential metabolic enzyme biotin protein ligase (BPL) represent a promising drug target for new antibacterials. Structural and biochemical studies on the BPL from S. aureus have paved the way for the design and development of new antibacterial chemotherapeutics. BPL employs an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5'-AMP from substrates biotin and ATP. Here we review the structure and catalytic mechanism of the target enzyme, along with an overview of chemical analogues of biotin and biotinyl-5'-AMP as BPL inhibitors reported to date. Of particular promise are studies to replace the labile phosphoroanhydride linker present in biotinyl-5'-AMP with alternative bioisosteres. A novel in situ click approach using a mutant of S. aureus BPL as a template for the synthesis of triazole-based inhibitors is also presented. These approaches can be widely applied to BPLs from other bacteria, as well as other closely related metabolic enzymes and antibacterial drug targets.
目前非常需要新型抗生素类别来对抗耐药性病原菌(如金黄色葡萄球菌)的出现。生物素蛋白连接酶(BPL)的抑制剂是新型抗菌药物的一个很有前途的靶标。对金黄色葡萄球菌 BPL 的结构和生化研究为设计和开发新型抗菌化学疗法铺平了道路。BPL 采用有序配体结合机制,从生物素和 ATP 这两种底物合成反应中间体生物素酰基-5'-AMP。本文综述了靶酶的结构和催化机制,以及迄今为止报道的作为 BPL 抑制剂的生物素和生物素酰基-5'-AMP 的化学类似物概述。特别有前途的是用生物素酰基-5'-AMP 中不稳定的磷酰基连接物的替代生物等排体来取代其的研究。还提出了一种使用金黄色葡萄球菌 BPL 的突变体作为模板原位点击合成三唑类抑制剂的新方法。这些方法可以广泛应用于来自其他细菌的 BPL 以及其他密切相关的代谢酶和抗菌药物靶标。