Suppr超能文献

概率建模估计水母的生态生理学特性和大小分布。

Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions.

机构信息

Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France.

Université de Nantes, CNRS, LS2N, F-44322, Nantes, France.

出版信息

Sci Rep. 2020 Apr 8;10(1):6074. doi: 10.1038/s41598-020-62357-5.

Abstract

While Ocean modeling has made significant advances over the last decade, its complex biological component is still oversimplified. In particular, modeling organisms in the ocean system must integrate parameters to fit both physiological and ecological behaviors that are together very difficult to determine. Such difficulty occurs for modeling Pelagia noctiluca. This jellyfish has a high abundance in the Mediterranean Sea and could contribute to several biogeochemical processes. However, gelatinous zooplanktons remain poorly represented in biogeochemical models because uncertainties about their ecophysiology limit our understanding of their potential role and impact. To overcome this issue, we propose, for the first time, the use of the Statistical Model Checking Engine (SMCE), a probability-based computational framework that considers a set of parameters as a whole. Contrary to standard parameter inference techniques, SMCE identifies sets of parameters that fit both laboratory-culturing observations and in situ patterns while considering uncertainties. Doing so, we estimated the best parameter sets of the ecophysiological model that represents the jellyfish growth and degrowth in laboratory conditions as well as its size. Behind this application, SMCE remains a computational framework that supports the projection of a model with uncertainties in broader contexts such as biogeochemical processes to drive future studies.

摘要

尽管海洋建模在过去十年中取得了重大进展,但它的复杂生物组成部分仍然过于简化。特别是,海洋系统中的模型生物必须整合参数,以适应生理和生态行为,而这些行为很难同时确定。这种困难在建模夜光游水母时就出现了。这种水母在地中海大量存在,可能对几种生物地球化学过程有贡献。然而,凝胶状浮游动物在生物地球化学模型中仍然表示不足,因为对其生态生理学的不确定性限制了我们对其潜在作用和影响的理解。为了克服这个问题,我们首次提出使用基于概率的计算框架统计模型检查引擎 (SMCE)。该框架将一组参数作为一个整体来考虑。与标准参数推断技术相反,SMCE 确定了一组参数,这些参数既符合实验室培养观察结果,也符合原位模式,同时考虑了不确定性。通过这样做,我们估计了代表水母在实验室条件下生长和衰退以及其大小的生态生理学模型的最佳参数集。在这个应用程序的背后,SMCE 仍然是一个计算框架,支持在更广泛的背景下,如生物地球化学过程,对模型进行有不确定性的预测,以推动未来的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验