Suppr超能文献

整合基因组特征进行非侵入性早期肺癌检测。

Integrating genomic features for non-invasive early lung cancer detection.

机构信息

Stanford Cancer Institute, Stanford University, Stanford, CA, USA.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2020 Apr;580(7802):245-251. doi: 10.1038/s41586-020-2140-0. Epub 2020 Mar 25.

Abstract

Radiologic screening of high-risk adults reduces lung-cancer-related mortality; however, a small minority of eligible individuals undergo such screening in the United States. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq), a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.

摘要

对高危成年人进行放射筛检可降低与肺癌相关的死亡率;然而,在美国,只有少数符合条件的人接受这种筛检。血液检测方法的出现可能会增加筛检的参与度。在这里,我们介绍了癌症个体化分析测序(CAPP-Seq)的改进方法,该方法用于分析循环肿瘤 DNA(ctDNA),以更好地促进筛检应用。我们表明,尽管 ctDNA 在早期肺癌中含量非常低,但在大多数患者中,在治疗前就已经存在 ctDNA,其存在与预后密切相关。我们还发现,肺癌患者和风险匹配对照组的游离 DNA(cfDNA)中的大多数体细胞突变反映了克隆性造血,并且是非复发性的。与肿瘤衍生的突变相比,克隆性造血突变发生在更长的 cfDNA 片段上,并且缺乏与吸烟相关的突变特征。将这些发现与其他分子特征相结合,我们开发并前瞻性验证了一种称为“血浆中肺癌可能性”(Lung-CLiP)的机器学习方法,该方法可以可靠地区分早期肺癌患者和风险匹配的对照组。这种方法的性能与基于肿瘤的 ctDNA 检测相似,并能够调整检测的特异性,以促进不同的临床应用。我们的研究结果确立了 cfDNA 在肺癌筛检中的潜力,并强调了在基于 cfDNA 的筛检研究中匹配病例和对照的重要性。

相似文献

1
Integrating genomic features for non-invasive early lung cancer detection.
Nature. 2020 Apr;580(7802):245-251. doi: 10.1038/s41586-020-2140-0. Epub 2020 Mar 25.
2
Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning.
Nat Biomed Eng. 2021 Jun;5(6):586-599. doi: 10.1038/s41551-021-00746-5. Epub 2021 Jun 15.
6
Plasma Circulating Tumor DNA and Clonal Hematopoiesis in Metastatic Renal Cell Carcinoma.
Clin Genitourin Cancer. 2020 Aug;18(4):322-331.e2. doi: 10.1016/j.clgc.2019.12.018. Epub 2020 Jan 8.
8
Circulating tumor DNA detection is correlated to histologic types in patients with early-stage non-small-cell lung cancer.
Lung Cancer. 2019 Aug;134:108-116. doi: 10.1016/j.lungcan.2019.05.034. Epub 2019 May 31.
10
Evaluation and integration of cell-free DNA signatures for detection of lung cancer.
Cancer Lett. 2024 Nov 1;604:217216. doi: 10.1016/j.canlet.2024.217216. Epub 2024 Sep 2.

引用本文的文献

3
Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy.
Biosensors (Basel). 2025 Jul 22;15(8):473. doi: 10.3390/bios15080473.
5
Multimodal Integration in Health Care: Development With Applications in Disease Management.
J Med Internet Res. 2025 Aug 21;27:e76557. doi: 10.2196/76557.
6
Challenges and proposed solutions to the adoption of cell free DNA in screening, detecting and prognosticating colorectal cancer.
World J Gastrointest Oncol. 2025 Aug 15;17(8):106663. doi: 10.4251/wjgo.v17.i8.106663.
7
Improvement of the sensitivity of circulating tumor DNA-based liquid biopsy: current approaches and future perspectives.
Explor Target Antitumor Ther. 2025 Aug 8;6:1002333. doi: 10.37349/etat.2025.1002333. eCollection 2025.
9
Co-Occurring Genomic Alterations in NSCLC: Making Order into a Crowded List.
Cancers (Basel). 2025 Jul 18;17(14):2388. doi: 10.3390/cancers17142388.

本文引用的文献

1
2
Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial.
N Engl J Med. 2020 Feb 6;382(6):503-513. doi: 10.1056/NEJMoa1911793. Epub 2020 Jan 29.
3
High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants.
Nat Med. 2019 Dec;25(12):1928-1937. doi: 10.1038/s41591-019-0652-7. Epub 2019 Nov 25.
4
Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction.
Cell. 2019 Jul 25;178(3):699-713.e19. doi: 10.1016/j.cell.2019.06.011. Epub 2019 Jul 4.
5
Genome-wide cell-free DNA fragmentation in patients with cancer.
Nature. 2019 Jun;570(7761):385-389. doi: 10.1038/s41586-019-1272-6. Epub 2019 May 29.
6
Biological background of the genomic variations of cf-DNA in healthy individuals.
Ann Oncol. 2019 Mar 1;30(3):464-470. doi: 10.1093/annonc/mdy513.
7
Sensitive tumour detection and classification using plasma cell-free DNA methylomes.
Nature. 2018 Nov;563(7732):579-583. doi: 10.1038/s41586-018-0703-0. Epub 2018 Nov 14.
8
Enhanced detection of circulating tumor DNA by fragment size analysis.
Sci Transl Med. 2018 Nov 7;10(466). doi: 10.1126/scitranslmed.aat4921.
9
Prevalence of Clonal Hematopoiesis Mutations in Tumor-Only Clinical Genomic Profiling of Solid Tumors.
JAMA Oncol. 2018 Nov 1;4(11):1589-1593. doi: 10.1001/jamaoncol.2018.2297.
10
Comprehensive Characterization of Cancer Driver Genes and Mutations.
Cell. 2018 Apr 5;173(2):371-385.e18. doi: 10.1016/j.cell.2018.02.060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验