Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
Nature. 2020 Apr;580(7802):245-251. doi: 10.1038/s41586-020-2140-0. Epub 2020 Mar 25.
Radiologic screening of high-risk adults reduces lung-cancer-related mortality; however, a small minority of eligible individuals undergo such screening in the United States. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq), a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
对高危成年人进行放射筛检可降低与肺癌相关的死亡率;然而,在美国,只有少数符合条件的人接受这种筛检。血液检测方法的出现可能会增加筛检的参与度。在这里,我们介绍了癌症个体化分析测序(CAPP-Seq)的改进方法,该方法用于分析循环肿瘤 DNA(ctDNA),以更好地促进筛检应用。我们表明,尽管 ctDNA 在早期肺癌中含量非常低,但在大多数患者中,在治疗前就已经存在 ctDNA,其存在与预后密切相关。我们还发现,肺癌患者和风险匹配对照组的游离 DNA(cfDNA)中的大多数体细胞突变反映了克隆性造血,并且是非复发性的。与肿瘤衍生的突变相比,克隆性造血突变发生在更长的 cfDNA 片段上,并且缺乏与吸烟相关的突变特征。将这些发现与其他分子特征相结合,我们开发并前瞻性验证了一种称为“血浆中肺癌可能性”(Lung-CLiP)的机器学习方法,该方法可以可靠地区分早期肺癌患者和风险匹配的对照组。这种方法的性能与基于肿瘤的 ctDNA 检测相似,并能够调整检测的特异性,以促进不同的临床应用。我们的研究结果确立了 cfDNA 在肺癌筛检中的潜力,并强调了在基于 cfDNA 的筛检研究中匹配病例和对照的重要性。