Suppr超能文献

医疗保健中的多模态整合:疾病管理应用中的发展

Multimodal Integration in Health Care: Development With Applications in Disease Management.

作者信息

Hao Yan, Cheng Chao, Li Juanjuan, Li Hongwen, Di Xingsi, Zeng Xiaoxia, Jin Shoumei, Han Xiaodong, Liu Chongsong, Wang Qianqian, Luo Bingying, Zeng Xianhai, Li Ke

机构信息

Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, 186 Huangge Road, Longcheng Subdistrict, Longgang District, Shenzhen, Guangdong, 518172, China, 86 (755)28989999.

Department of Dentistry, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, Guangdong, China.

出版信息

J Med Internet Res. 2025 Aug 21;27:e76557. doi: 10.2196/76557.

Abstract

Multimodal data integration has emerged as a transformative approach in the health care sector, systematically combining complementary biological and clinical data sources such as genomics, medical imaging, electronic health records, and wearable device outputs. This approach provides a multidimensional perspective of patient health that enhances the diagnosis, treatment, and management of various medical conditions. This viewpoint presents an overview of the current state of multimodal integration in health care, spanning clinical applications, current challenges, and future directions. We focus primarily on its applications across different disease domains, particularly in oncology and ophthalmology. Other diseases are briefly discussed due to the few available literature. In oncology, the integration of multimodal data enables more precise tumor characterization and personalized treatment plans. Multimodal fusion demonstrates accurate prediction of anti-human epidermal growth factor receptor 2 therapy response (area under the curve=0.91). In ophthalmology, multimodal integration through the combination of genetic and imaging data facilitates the early diagnosis of retinal diseases. However, substantial challenges remain regarding data standardization, model deployment, and model interpretability. We also highlight the future directions of multimodal integration, including its expanded disease applications, such as neurological and otolaryngological diseases, and the trend toward large-scale multimodal models, which enhance accuracy. Overall, the innovative potential of multimodal integration is expected to further revolutionize the health care industry, providing more comprehensive and personalized solutions for disease management.

摘要

多模态数据整合已成为医疗保健领域一种变革性方法,系统地整合互补的生物和临床数据源,如基因组学、医学成像、电子健康记录以及可穿戴设备输出数据。这种方法提供了患者健康的多维视角,增强了对各种医疗状况的诊断、治疗和管理。本文概述了医疗保健中多模态整合的现状,涵盖临床应用、当前挑战和未来方向。我们主要关注其在不同疾病领域的应用,特别是肿瘤学和眼科。由于现有文献较少,对其他疾病进行了简要讨论。在肿瘤学中,多模态数据整合能够实现更精确的肿瘤特征描述和个性化治疗方案。多模态融合显示出对抗人表皮生长因子受体2治疗反应的准确预测(曲线下面积=0.91)。在眼科,通过整合遗传和成像数据进行多模态整合有助于视网膜疾病的早期诊断。然而,在数据标准化、模型部署和模型可解释性方面仍存在重大挑战。我们还强调了多模态整合的未来方向,包括其在神经系统疾病和耳鼻喉科疾病等更多疾病中的应用扩展,以及朝着提高准确性的大规模多模态模型发展的趋势。总体而言,多模态整合的创新潜力有望进一步彻底改变医疗保健行业,为疾病管理提供更全面、个性化的解决方案。

相似文献

本文引用的文献

2
Integrated multimodal cell atlas of Alzheimer's disease.阿尔茨海默病的综合多模态细胞图谱。
Nat Neurosci. 2024 Dec;27(12):2366-2383. doi: 10.1038/s41593-024-01774-5. Epub 2024 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验