Suppr超能文献

陶瓷生物材料诱导骨再生过程中的强度增加:一项微观力学研究。

Strength increase during ceramic biomaterial-induced bone regeneration: a micromechanical study.

作者信息

Scheiner Stefan, Komlev Vladimir S, Hellmich Christian

机构信息

1Institute for Mechanics of Materials and Structures, Vienna University of Technology, Vienna, Austria.

2A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia.

出版信息

Int J Fract. 2016;202(2):217-235. doi: 10.1007/s10704-016-0157-z. Epub 2016 Oct 20.

Abstract

Bone tissue engineering materials must blend in the targeted physiological environment, in terms of both the materials' biocompatibility and mechanical properties. As for the latter, a well-adjusted stiffness ensures that the biomaterial's deformation behavior fits well to the deformation behavior of the surrounding biological tissue, whereas an appropriate strength provides sufficient load-carrying capacity of the biomaterial. Here, a mathematical modeling approach for estimating the macroscopic load that initiates failure of a hierarchically organized, granular, hydroxyapatite-based biomaterial is presented. For this purpose, a micromechanics model is developed for downscaling macroscopically prescribed stress (or strain) states to the level of the needle-shaped hydroxyapatite crystals. Presuming that the biomaterial fails due to the quasi-brittle failure of the most unfavorably stressed hydroxyapatite needle, the downscaled stress tensors are fed into a suitable, Mohr-Coulomb-type failure criterion, based on which the macroscopic failure load is deduced. The change of the biomaterial's composition in response to placing it in physiological solution, caused by growth of new bone tissue on the granules's surfaces, on the one hand, and by resorption of the hydroxyapatite crystals, on the other hand, is taken into account by means of suitable evolution laws. Numerical studies show how the macroscopic load-carrying capacity of the biomaterial is influenced by its design parameters. The presented modeling approach could prove beneficial for the design process of the studied biomaterials (as well as similarly composed biomaterials), particularly in terms of optimizing its mechanical performance.

摘要

骨组织工程材料必须在材料的生物相容性和机械性能方面与目标生理环境相融合。至于后者,良好调节的刚度可确保生物材料的变形行为与周围生物组织的变形行为良好匹配,而适当的强度则为生物材料提供足够的承载能力。在此,提出了一种数学建模方法,用于估计引发分层组织的、颗粒状的、基于羟基磷灰石的生物材料失效的宏观载荷。为此,开发了一种微观力学模型,用于将宏观规定的应力(或应变)状态下缩至针状羟基磷灰石晶体的水平。假定生物材料由于受力最不利的羟基磷灰石针的准脆性失效而失效,将下缩后的应力张量输入到合适的摩尔-库仑型失效准则中,据此推导出宏观失效载荷。一方面,通过颗粒表面新骨组织的生长,另一方面,通过羟基磷灰石晶体的吸收,生物材料在置于生理溶液中时其成分的变化通过合适的演化定律来考虑。数值研究表明生物材料的宏观承载能力如何受到其设计参数的影响。所提出的建模方法可能对所研究的生物材料(以及成分相似的生物材料)的设计过程有益,特别是在优化其机械性能方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/717f/7115089/031080f0f781/10704_2016_157_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验