Fritsch Andreas, Dormieux Luc, Hellmich Christian, Sanahuja Julien
Laboratory for Materials and Structures, Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France.
J Biomed Mater Res A. 2009 Jan;88(1):149-61. doi: 10.1002/jbm.a.31727.
Hydroxyapatite (HA) biomaterials production has been a major field in biomaterials science and biomechanical engineering. As concerns prediction of their stiffness and strength, we propose to go beyond statistical correlations with porosity or empirical structure-property relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. The macroscopic mechanical properties are estimated from the microstructures of the materials and their composition, in a homogenization process based on continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals consisting of HA needles and spherical pores. Validation of respective micromechanical models relies on two independent experimental sets: biomaterial-specific macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength predicted from biomaterial-specific porosities, on the basis of biomaterial-independent ("universal") elastic and strength properties of HA, are compared with corresponding biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and strength values. The good agreement between model predictions and the corresponding experiments underlines the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach the desired values for biomaterial stiffness or strength.
羟基磷灰石(HA)生物材料的生产一直是生物材料科学和生物力学工程中的一个主要领域。关于预测其刚度和强度,我们建议超越与孔隙率的统计相关性或经验结构-性能关系,以解决控制整体力学行为的材料固有微观结构问题。在基于连续介质微观力学的均匀化过程中,从材料的微观结构及其组成来估计宏观力学性能。因此,生物材料被设想为由HA针和球形孔隙组成的多孔多晶体。各自微观力学模型的验证依赖于两组独立的实验:根据HA的与生物材料无关的(“通用”)弹性和强度特性,由生物材料特定的孔隙率预测的生物材料特定宏观(均匀化)刚度和单轴(拉伸和压缩)强度,与相应的生物材料特定实验测定的(声学和力学)刚度和强度值进行比较。模型预测与相应实验之间的良好一致性突出了微观力学建模在通过优化孔隙率或微观结构几何形状等关键参数来改进生物材料设计方面的潜力,以便达到生物材料刚度或强度的期望值。