Suppr超能文献

非线性常微分方程模型中贝叶斯参数推断的近似技术与精确技术比较

A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models.

作者信息

Alahmadi Amani A, Flegg Jennifer A, Cochrane Davis G, Drovandi Christopher C, Keith Jonathan M

机构信息

School of Mathematics, Monash University, Clayton, Victoria, Australia.

College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia.

出版信息

R Soc Open Sci. 2020 Mar 11;7(3):191315. doi: 10.1098/rsos.191315. eCollection 2020 Mar.

Abstract

The behaviour of many processes in science and engineering can be accurately described by dynamical system models consisting of a set of ordinary differential equations (ODEs). Often these models have several unknown parameters that are difficult to estimate from experimental data, in which case Bayesian inference can be a useful tool. In principle, exact Bayesian inference using Markov chain Monte Carlo (MCMC) techniques is possible; however, in practice, such methods may suffer from slow convergence and poor mixing. To address this problem, several approaches based on approximate Bayesian computation (ABC) have been introduced, including Markov chain Monte Carlo ABC (MCMC ABC) and sequential Monte Carlo ABC (SMC ABC). While the system of ODEs describes the underlying process that generates the data, the observed measurements invariably include errors. In this paper, we argue that several popular ABC approaches fail to adequately model these errors because the acceptance probability depends on the choice of the discrepancy function and the tolerance without any consideration of the error term. We observe that the so-called posterior distributions derived from such methods do not accurately reflect the epistemic uncertainties in parameter values. Moreover, we demonstrate that these methods provide minimal computational advantages over exact Bayesian methods when applied to two ODE epidemiological models with simulated data and one with real data concerning malaria transmission in Afghanistan.

摘要

科学与工程领域中许多过程的行为可以通过由一组常微分方程(ODEs)组成的动态系统模型来准确描述。通常,这些模型有几个难以从实验数据中估计的未知参数,在这种情况下,贝叶斯推理可能是一个有用的工具。原则上,使用马尔可夫链蒙特卡罗(MCMC)技术进行精确的贝叶斯推理是可行的;然而,在实际应用中,这些方法可能会出现收敛速度慢和混合效果差的问题。为了解决这个问题,已经引入了几种基于近似贝叶斯计算(ABC)的方法,包括马尔可夫链蒙特卡罗ABC(MCMC ABC)和序贯蒙特卡罗ABC(SMC ABC)。虽然ODE系统描述了生成数据的潜在过程,但观测到的测量值总是包含误差。在本文中,我们认为几种流行的ABC方法未能充分对这些误差进行建模,因为接受概率取决于差异函数的选择和容差,而没有考虑误差项。我们观察到,从这些方法中得出的所谓后验分布并不能准确反映参数值中的认知不确定性。此外,我们证明,当将这些方法应用于两个具有模拟数据的ODE流行病学模型以及一个具有阿富汗疟疾传播真实数据的模型时,与精确贝叶斯方法相比,它们在计算上的优势极小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d36/7137938/46488264a5c9/rsos191315-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验