Suppr超能文献

分支分析为Hes1反馈回路中的贝叶斯推理提供信息。

Bifurcation analysis informs Bayesian inference in the Hes1 feedback loop.

作者信息

Higham Catherine F

机构信息

Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

出版信息

BMC Syst Biol. 2009 Jan 26;3:12. doi: 10.1186/1752-0509-3-12.

Abstract

BACKGROUND

Ordinary differential equations (ODEs) are an important tool for describing the dynamics of biological systems. However, for ODE models to be useful, their parameters must first be calibrated. Parameter estimation, that is, finding parameter values given experimental data, is an inference problem that can be treated systematically through a Bayesian framework.A Markov chain Monte Carlo approach can then be used to sample from the appropriate posterior probability distributions, provided that suitable prior distributions can be found for the unknown parameter values. Choosing these priors is therefore a vital first step in the inference process. We study here a negative feedback loop in gene regulation where an ODE incorporating a time delay has been proposed as a realistic model and where experimental data is available. Our aim is to show that a priori mathematical analysis can be exploited in the choice of priors.

RESULTS

By focussing on the onset of oscillatory behaviour through a Hopf Bifurcation, we derive a range of analytical expressions and constraints that link the model parameters to the observed dynamics of the system. Computational tests on both simulated and experimental data emphasise the usefulness of this analysis.

CONCLUSION

Mathematical analysis not only gives insights into the possible dynamical behaviour of gene expression models, but can also be used to inform the choice of priors when parameters are inferred from experimental data in a Bayesian setting.

摘要

背景

常微分方程(ODEs)是描述生物系统动态的重要工具。然而,要使ODE模型有用,必须首先对其参数进行校准。参数估计,即根据实验数据确定参数值,是一个推理问题,可以通过贝叶斯框架进行系统处理。然后,可以使用马尔可夫链蒙特卡罗方法从适当的后验概率分布中采样,前提是可以为未知参数值找到合适的先验分布。因此,选择这些先验分布是推理过程中至关重要的第一步。我们在此研究基因调控中的一个负反馈回路,其中一个包含时间延迟的ODE已被提出作为一个现实模型,并且有实验数据可用。我们的目的是表明,先验数学分析可用于先验分布的选择。

结果

通过关注霍普夫分岔引起的振荡行为的开始,我们推导出一系列解析表达式和约束条件,将模型参数与系统的观测动态联系起来。对模拟数据和实验数据的计算测试强调了这种分析的有用性。

结论

数学分析不仅能深入了解基因表达模型可能的动态行为,还可用于在贝叶斯环境下从实验数据推断参数时为先验分布的选择提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcb5/2669796/3dab7ace9725/1752-0509-3-12-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验