Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRMIST) , Kattankulathur, India.
Laboratorio Fisiología Molecular Microorganismos Extremófilos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca, México.
J Air Waste Manag Assoc. 2020 Dec;70(12):1244-1251. doi: 10.1080/10962247.2020.1749730.
With the increase in the cognizance toward the wide and abundant lignocellulosic biomass, a great interest has been garnered toward the production of value-added products from the biomass. Hence, by capitalizing the biomass, the current work developed a simultaneous pre-treatment and saccharification (SPS) process using transgenic e. The ability of e to produce lignolytic and cellulolytic enzymes was enhanced by optimizing key process parameters. Under the optimized conditions, a maximum of 1245.6 U/kg of cellulase and 1203.36 U/kg of xylanase, 183.2 U/kg of laccase along with 392.36 g/kg of fermentable sugars were obtained. On comparing with acid and alkaline pre-treatment methods, the e -mediated SPS process exhibited trace formation of fermentative inhibitors, which resulted in a minimal inhibition of . Overall, the current work implements the biorefinery concept on biomass by advocating circular economy. : Valorization of lignocellulosic waste biomass into value added compound and as biofuel is considered as a promising alternative resource, owing to its availability and low production cost. However, the presence of chemically resistant lignin demands an intensive treatment process, which sometimes leads to the formation of fermentative inhibitors. is a deciduous commercial plant, and an average of 125 tonnes/hector of waste is generated annually in India. By considering the demerit of delignification and the wide availability of biomass (CB), the current work aimed at the development of a single-pot simultaneous pre-treatment and saccharification (SPS) of CB by transgenic .
随着人们对广泛而丰富的木质纤维素生物质的认识不断提高,人们对从生物质中生产高附加值产品产生了浓厚的兴趣。因此,通过利用生物质,本工作利用转基因 e 开发了一种同时进行预处理和糖化(SPS)的方法。通过优化关键工艺参数,增强了 e 生产木质素降解酶和纤维素酶的能力。在优化条件下,获得了 1245.6 U/kg 的纤维素酶和 1203.36 U/kg 的木聚糖酶、183.2 U/kg 的漆酶和 392.36 g/kg 的可发酵糖。与酸预处理和碱预处理方法相比,e 介导的 SPS 工艺产生的发酵抑制剂痕量,对 的抑制作用最小。总的来说,本工作通过倡导循环经济,在 生物质上实施了生物炼制概念。木质纤维素废生物质转化为附加值化合物和生物燃料被认为是一种很有前途的替代资源,因为它具有可用性和低成本。然而,由于木质素具有化学抗性,因此需要进行强化处理,这有时会导致发酵抑制剂的形成。 e 是一种落叶商业植物,印度每年平均产生 125 吨/公顷的废物。考虑到脱木质素的缺点和 e 生物质(CB)的广泛可用性,本工作旨在通过转基因 e 开发一种单罐同时进行 CB 的预处理和糖化(SPS)的方法。