Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
Department of Post Harvest Process and Food Engineering, College of Technology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
J Sci Food Agric. 2018 Sep;98(12):4411-4419. doi: 10.1002/jsfa.8963. Epub 2018 Mar 26.
Lignocellulosic biomass from bamboo is an attractive feedstock for the bioethanol industry owing to its high cellulosic content and fast growth rate. In this study, powdery biomass was first enzymatically delignified and then saccharified using crude enzymes.
The biological pretreatment decreased the lignin content of the biomass from an initial value of 295 to 137.7 g kg , with a simultaneous increase in exposed cellulose content from 379.3 to 615.9 g kg . For optimization of the saccharification, response surface methodology was adopted using a three-factor/three-level Box-Behnken design with crude fungal cellulase loading (FPU g substrate), substrate concentration (% w/v) and saccharification temperature (°C) as the main process parameters. A maximum saccharification yield of 47.19% was achieved under the optimized conditions (cellulase enzyme 18.4 FPU g substrate, substrate concentration 1.0% w/v, temperature 39.49 °C). Biological delignification and saccharification of the biomass were further confirmed through scanning electron microscopy analysis.
It is evident from the study that bamboo, as a renewable energy bioresource, can be hydrolysed to reducing sugars by using crude laccase/cellulase enzymes of fungal origin with good saccharification yield. Thus crude enzyme preparations could be utilized efficiently for eco-friendly and cost-effective bioethanol production. © 2018 Society of Chemical Industry.
由于竹子具有较高的纤维素含量和较快的生长速度,因此其木质纤维素生物质是生物乙醇行业很有吸引力的原料。在本研究中,首先使用粗酶对粉状生物质进行酶法脱木质素,然后进行糖化。
生物预处理将生物质的木质素含量从初始值 295 降低到 137.7 g/kg,同时暴露的纤维素含量从 379.3 增加到 615.9 g/kg。为了优化糖化,采用三因素三水平 Box-Behnken 设计,以粗真菌纤维素酶用量(FPU g 底物)、底物浓度(%w/v)和糖化温度(°C)作为主要工艺参数。在优化条件下(纤维素酶 18.4 FPU g 底物、底物浓度 1.0%w/v、温度 39.49°C),糖化产率最高可达 47.19%。通过扫描电子显微镜分析进一步证实了生物质的生物脱木质素和糖化。
从这项研究可以明显看出,竹子作为一种可再生能源生物资源,可以通过使用真菌来源的粗漆酶/纤维素酶以良好的糖化产率水解为还原糖。因此,粗酶制剂可以有效地用于环保且具有成本效益的生物乙醇生产。 © 2018 英国化学学会。