Suppr超能文献

有丝分裂和胞质分裂后残留体在哺乳动物大脑发育过程中受到调控。

Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development.

机构信息

Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.

Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9584-9593. doi: 10.1073/pnas.1919658117. Epub 2020 Apr 9.

Abstract

Building a brain of the proper size and structure requires neural stem cells (NSCs) to divide with tight temporal and spatial control to produce different daughter cell types in proper numbers and sequence. Mammalian NSCs in the embryonic cortex must maintain their polarized epithelial structure as they undergo both early proliferative divisions and later neurogenic divisions. To do this, they undergo a polarized form of cytokinesis at the apical membrane that is not well understood. Here, we investigate whether polarized furrowing and abscission in mouse NSCs are regulated differently at earlier and later stages and in a cytokinesis mutant, This mutant was previously shown to have microcephaly and elevated apoptosis of NSCs. We developed methods to live image furrow ingression and midbody abscission in NSCs within cortical explants. We find that polarized furrow ingression occurs at a steady rate and completes in ∼15 min at two different ages. However, ingression is slower in a subset of mutant NSCs. Abscission is usually observed on both sides of the midbody and takes 65 to 75 min to complete. Surprisingly, abscission is accelerated in the mutant NSCs. Postabscission midbody remnants are observed at the apical membranes of daughter cells and are much more abundant in early-stage cortices. After NSC divisions in vitro, midbody remnants are more often retained on the daughter cells of early proliferative divisions. Altogether, these results suggest that regulation of abscission timing and midbody remnants in embryonic NSCs may influence proper brain growth and structure.

摘要

构建大小和结构适当的大脑需要神经干细胞(NSCs)进行精确的时空控制分裂,以产生适当数量和顺序的不同子细胞类型。胚胎皮层中的哺乳动物 NSCs 在经历早期增殖分裂和后期神经发生分裂时,必须保持其极化的上皮结构。为了做到这一点,它们在顶端膜经历一种未被很好理解的极化胞质分裂形式。在这里,我们研究了在早期和晚期以及在胞质分裂突变体中,极化的沟和分裂是否在小鼠 NSCs 中受到不同的调节,这个突变体先前被证明具有小头畸形和 NSCs 的凋亡增加。我们开发了在皮质外植体中活细胞成像 NSCs 中沟的侵入和中体的分裂的方法。我们发现,极化的沟侵入以稳定的速度发生,在两个不同的年龄大约需要 15 分钟完成。然而,在一部分 突变体 NSCs 中,侵入速度较慢。分裂通常在中体的两侧观察到,需要 65 到 75 分钟才能完成。令人惊讶的是,在 突变体 NSCs 中,分裂被加速了。分裂后中体的残余物在子细胞的顶端膜上观察到,在早期皮质中更为丰富。在体外 NSC 分裂后,中体残余物更经常保留在早期增殖分裂的子细胞上。总之,这些结果表明,胚胎 NSCs 中分裂时间和中体残余物的调节可能影响大脑的正常生长和结构。

相似文献

1
Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9584-9593. doi: 10.1073/pnas.1919658117. Epub 2020 Apr 9.
2
Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex.
J Neurosci. 2021 Apr 14;41(15):3344-3365. doi: 10.1523/JNEUROSCI.1955-20.2021. Epub 2021 Feb 23.
4
5
Imaging and quantitative analysis of cytokinesis in developing brains of Kinesin-6 mutant mice.
Methods Cell Biol. 2016;131:233-52. doi: 10.1016/bs.mcb.2015.06.008. Epub 2015 Sep 2.
6
Regulation of cytokinesis during corticogenesis: focus on the midbody.
FEBS Lett. 2017 Dec;591(24):4009-4026. doi: 10.1002/1873-3468.12676. Epub 2017 Aug 21.
7
Cytokinetic Abscission Regulation in Neural Stem Cells and Tissue Development.
Curr Stem Cell Rep. 2021 Dec;7(4):161-173. doi: 10.1007/s40778-021-00193-7. Epub 2021 Aug 11.
8
Kinesin-6 KIF20B is required for efficient cytokinetic furrowing and timely abscission in human cells.
Mol Biol Cell. 2018 Jan 15;29(2):166-179. doi: 10.1091/mbc.E17-08-0495. Epub 2017 Nov 22.
9
Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity.
J Neurosci. 2016 Nov 9;36(45):11394-11401. doi: 10.1523/JNEUROSCI.2359-16.2016.
10
Capping protein regulates actin dynamics during cytokinetic midbody maturation.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2138-2143. doi: 10.1073/pnas.1722281115. Epub 2018 Feb 8.

引用本文的文献

1
The midbody and midbody remnant: from cellular debris to signaling organelle with diagnostic and therapeutic potential.
Mol Biol Cell. 2025 Jul 1;36(7):re4. doi: 10.1091/mbc.E25-03-0120. Epub 2025 May 28.
2
Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?
J Nanobiotechnology. 2025 Jan 29;23(1):61. doi: 10.1186/s12951-025-03102-w.
3
Anti-KIF20B autoantibodies are associated with cranial neuropathy in systemic lupus erythematosus.
Lupus Sci Med. 2024 Apr 9;11(1):e001139. doi: 10.1136/lupus-2023-001139.
4
A neurodevelopmental disorder associated with a loss-of-function missense mutation in RAB35.
J Biol Chem. 2024 Apr;300(4):107124. doi: 10.1016/j.jbc.2024.107124. Epub 2024 Mar 1.
5
P53 independent pathogenic mechanisms contribute to BubR1 microcephaly.
Front Cell Dev Biol. 2023 Oct 12;11:1282182. doi: 10.3389/fcell.2023.1282182. eCollection 2023.
6
HIPK2 in the physiology of nervous system and its implications in neurological disorders.
Biochim Biophys Acta Mol Cell Res. 2023 Jun;1870(5):119465. doi: 10.1016/j.bbamcr.2023.119465. Epub 2023 Mar 20.
7
An entosis-like process induces mitotic disruption in Pals1 microcephaly pathogenesis.
Nat Commun. 2023 Jan 5;14(1):82. doi: 10.1038/s41467-022-35719-y.
8
Cytokinetic Abscission Regulation in Neural Stem Cells and Tissue Development.
Curr Stem Cell Rep. 2021 Dec;7(4):161-173. doi: 10.1007/s40778-021-00193-7. Epub 2021 Aug 11.
9
The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain.
Front Cell Dev Biol. 2022 May 25;10:885269. doi: 10.3389/fcell.2022.885269. eCollection 2022.
10
Widespread translational control regulates retinal development in mouse.
Nucleic Acids Res. 2021 Sep 27;49(17):9648-9664. doi: 10.1093/nar/gkab749.

本文引用的文献

1
Abscission Couples Cell Division to Embryonic Stem Cell Fate.
Dev Cell. 2020 Oct 26;55(2):195-208.e5. doi: 10.1016/j.devcel.2020.09.001. Epub 2020 Sep 25.
3
The post-abscission midbody is an intracellular signaling organelle that regulates cell proliferation.
Nat Commun. 2019 Jul 18;10(1):3181. doi: 10.1038/s41467-019-10871-0.
4
Building bridges between chromosomes: novel insights into the abscission checkpoint.
Cell Mol Life Sci. 2019 Nov;76(21):4291-4307. doi: 10.1007/s00018-019-03224-z. Epub 2019 Jul 13.
5
Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity.
Mol Biol Cell. 2019 May 1;30(10):1214-1229. doi: 10.1091/mbc.E18-06-0361. Epub 2019 Mar 6.
6
7
The Genetics of Primary Microcephaly.
Annu Rev Genomics Hum Genet. 2018 Aug 31;19:177-200. doi: 10.1146/annurev-genom-083117-021441. Epub 2018 May 23.
8
Coordination of Septate Junctions Assembly and Completion of Cytokinesis in Proliferative Epithelial Tissues.
Curr Biol. 2018 May 7;28(9):1380-1391.e4. doi: 10.1016/j.cub.2018.03.034. Epub 2018 Apr 26.
9
Kinesin-6 KIF20B is required for efficient cytokinetic furrowing and timely abscission in human cells.
Mol Biol Cell. 2018 Jan 15;29(2):166-179. doi: 10.1091/mbc.E17-08-0495. Epub 2017 Nov 22.
10
Mutations of KIF14 cause primary microcephaly by impairing cytokinesis.
Ann Neurol. 2017 Oct;82(4):562-577. doi: 10.1002/ana.25044. Epub 2017 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验