Suppr超能文献

氢的化学操控在氧化镓中诱导出高p型和n型导电性。

Chemical manipulation of hydrogen induced high p-type and n-type conductivity in GaO.

作者信息

Islam Md Minhazul, Liedke Maciej Oskar, Winarski David, Butterling Maik, Wagner Andreas, Hosemann Peter, Wang Yongqiang, Uberuaga Blas, Selim Farida A

机构信息

Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.

Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio, 43403, USA.

出版信息

Sci Rep. 2020 Apr 9;10(1):6134. doi: 10.1038/s41598-020-62948-2.

Abstract

Advancement of optoelectronic and high-power devices is tied to the development of wide band gap materials with excellent transport properties. However, bipolar doping (n-type and p-type doping) and realizing high carrier density while maintaining good mobility have been big challenges in wide band gap materials. Here P-type and n-type conductivity was introduced in β-GaO, an ultra-wide band gap oxide, by controlling hydrogen incorporation in the lattice without further doping. Hydrogen induced a 9-order of magnitude increase of n-type conductivity with donor ionization energy of 20 meV and resistivity of 10 Ω.cm. The conductivity was switched to p-type with acceptor ionization energy of 42 meV by altering hydrogen incorporation in the lattice. Density functional theory calculations were used to examine hydrogen location in the GaO lattice and identified a new donor type as the source of this remarkable n-type conductivity. Positron annihilation spectroscopy measurements confirm this finding and the interpretation of the experimental results. This work illustrates a new approach that allows a tunable and reversible way of modifying the conductivity of semiconductors and it is expected to have profound implications on semiconductor field. At the same time, it demonstrates for the first time p-type and remarkable n-type conductivity in GaO which should usher in the development of GaO devices and advance optoelectronics and high-power devices.

摘要

光电子器件和高功率器件的发展与具有优异输运特性的宽带隙材料的开发紧密相关。然而,在宽带隙材料中实现双极掺杂(n型和p型掺杂)并在保持良好迁移率的同时实现高载流子密度一直是巨大的挑战。在此,通过控制晶格中的氢掺入而无需进一步掺杂,在超宽带隙氧化物β-GaO中引入了p型和n型导电性。氢使n型导电性提高了9个数量级,施主电离能为20 meV,电阻率为10 Ω·cm。通过改变晶格中的氢掺入,导电性转变为p型,受主电离能为42 meV。利用密度泛函理论计算来研究氢在GaO晶格中的位置,并确定了一种新的施主类型作为这种显著n型导电性的来源。正电子湮没光谱测量证实了这一发现以及对实验结果的解释。这项工作展示了一种新方法,该方法允许以可调谐和可逆的方式改变半导体的导电性,预计将对半导体领域产生深远影响。同时,它首次证明了GaO中的p型和显著的n型导电性,这将推动GaO器件的发展,并促进光电子器件和高功率器件的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2819/7145873/8da907842ca8/41598_2020_62948_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验