Li Bochang, Wang Yibo, Luo Zhengdong, Xu Wenhui, Gong Hehe, You Tiangui, Ou Xin, Ye Jiandong, Hao Yue, Han Genquan
Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
School of Microelectronics, Xidian University, Xi'an 710071, China.
Fundam Res. 2023 Nov 10;5(2):804-817. doi: 10.1016/j.fmre.2023.10.008. eCollection 2025 Mar.
Due to its high critical breakdown electrical field and the availability of large-scale single crystal substrates, Gallium oxide (GaO) holds great promise for power electronic and radio frequency (RF) applications. While significant advancements have been made in GaO material and device research, there are still challenges related to its ultra-low thermal conductivity and the lack of effective p-type doping methods. These limitations hinder the fabrication of complex device structures and the enhancement of device performance. This review aims to provide an introduction to the research development of GaO heterogeneous and heterojunction power devices based on heterogeneous integration technology. By utilizing ion-cutting and wafer bonding techniques, heterogeneous substrates with high thermal conductivity have been realized, offering a viable solution to overcome the thermal limitations of GaO. Compared to GaO bulk devices, GaO devices fabricated on heterogeneous substrates integrated with SiC or Si exhibit superior thermal properties. Power diodes and superjunction transistors based on p-NiO/n-GaO heterojunctions on heterogeneous substrates have demonstrated outstanding electrical characteristics, presenting a feasible method for the development of bipolar devices. The technologies of heterogeneous integration and heterojunction address critical issues related to GaO, thereby advancing the commercial applications of GaO devices in power and RF fields. By integrating GaO with other materials and leveraging heterojunction interfaces, researchers and engineers have made significant progress in improving device performance and overcoming limitations. These advancements pave the way for the wider adoption of GaO-based devices in various power and RF applications.
由于氧化镓(GaO)具有高临界击穿电场以及可获得大规模单晶衬底,因此在功率电子和射频(RF)应用方面具有巨大潜力。虽然GaO材料和器件研究已取得显著进展,但仍存在与其超低热导率以及缺乏有效的p型掺杂方法相关的挑战。这些限制阻碍了复杂器件结构的制造以及器件性能的提升。本综述旨在介绍基于异质集成技术的GaO异质和异质结功率器件的研究进展。通过利用离子切割和晶圆键合技术,已实现具有高导热率的异质衬底,为克服GaO的热限制提供了可行的解决方案。与GaO体器件相比,在与SiC或Si集成的异质衬底上制造的GaO器件表现出优异的热性能。基于异质衬底上p-NiO/n-GaO异质结的功率二极管和超结晶体管已展现出出色的电学特性,为双极型器件的发展提供了一种可行的方法。异质集成和异质结技术解决了与GaO相关的关键问题,从而推动了GaO器件在功率和射频领域的商业应用。通过将GaO与其他材料集成并利用异质结界面,研究人员和工程师在改善器件性能和克服限制方面取得了重大进展。这些进展为基于GaO的器件在各种功率和射频应用中的更广泛采用铺平了道路。