Love Kaitlin M, Liu Jia, Regensteiner Judith G, Reusch Jane E B, Liu Zhenqi
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA.
Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado, USA.
J Diabetes. 2020 Jul;12(7):488-498. doi: 10.1111/1753-0407.13045. Epub 2020 Apr 23.
Muscle microvasculature critically regulates skeletal and cardiac muscle health and function. It provides endothelial surface area for substrate exchange between the plasma compartment and the muscle interstitium. Insulin fine-tunes muscle microvascular perfusion to regulate its own action in muscle and oxygen and nutrient supplies to muscle. Specifically, insulin increases muscle microvascular perfusion, which results in increased delivery of insulin to the capillaries that bathe the muscle cells and then facilitate its own transendothelial transport to reach the muscle interstitium. In type 2 diabetes, muscle microvascular responses to insulin are blunted and there is capillary rarefaction. Both loss of capillary density and decreased insulin-mediated capillary recruitment contribute to a decreased endothelial surface area available for substrate exchange. Vasculature expresses abundant glucagon-like peptide 1 (GLP-1) receptors. GLP-1, in addition to its well-characterized glycemic actions, improves endothelial function, increases muscle microvascular perfusion, and stimulates angiogenesis. Importantly, these actions are preserved in the insulin resistant states. Thus, treatment of insulin resistant patients with GLP-1 receptor agonists may improve skeletal and cardiac muscle microvascular perfusion and increase muscle capillarization, leading to improved delivery of oxygen, nutrients, and hormones such as insulin to the myocytes. These actions of GLP-1 impact skeletal and cardiac muscle function and systems biology such as functional exercise capacity. Preclinical studies and clinical trials involving the use of GLP-1 receptor agonists have shown salutary cardiovascular effects and improved cardiovascular outcomes in type 2 diabetes mellitus. Future studies should further examine the different roles of GLP-1 in cardiac as well as skeletal muscle function.
肌肉微血管系统对骨骼肌和心肌的健康及功能起着至关重要的调节作用。它为血浆腔室与肌肉间质之间的底物交换提供内皮表面积。胰岛素可微调肌肉微血管灌注,以调节其自身在肌肉中的作用以及对肌肉的氧气和营养供应。具体而言,胰岛素会增加肌肉微血管灌注,这会导致更多胰岛素被输送到环绕肌肉细胞的毛细血管,进而促进其自身的跨内皮转运,使其到达肌肉间质。在2型糖尿病中,肌肉对胰岛素的微血管反应减弱,且存在毛细血管稀疏现象。毛细血管密度降低和胰岛素介导的毛细血管募集减少,都会导致可用于底物交换的内皮表面积减小。血管系统表达大量胰高血糖素样肽1(GLP-1)受体。GLP-1除了具有其已被充分认识的血糖调节作用外,还能改善内皮功能、增加肌肉微血管灌注并刺激血管生成。重要的是,这些作用在胰岛素抵抗状态下依然存在。因此,用GLP-1受体激动剂治疗胰岛素抵抗患者,可能会改善骨骼肌和心肌的微血管灌注,并增加肌肉毛细血管化,从而改善氧气、营养物质以及胰岛素等激素向心肌细胞的输送。GLP-1的这些作用会影响骨骼肌和心肌功能以及诸如功能性运动能力等系统生物学。涉及使用GLP-1受体激动剂的临床前研究和临床试验已表明,其对2型糖尿病患者具有有益的心血管作用,并能改善心血管结局。未来的研究应进一步探究GLP-1在心肌以及骨骼肌功能中的不同作用。