Schmitz Sarah, Seibert Jakob, Ostermeir Katja, Hansen Andreas, Göller Andreas H, Grimme Stefan
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße 4, D-53115 Bonn, Germany.
Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, D-42096 Wuppertal, Germany.
J Phys Chem B. 2020 May 7;124(18):3636-3646. doi: 10.1021/acs.jpcb.0c00549. Epub 2020 Apr 23.
Special-purpose classical force fields (FFs) provide good accuracy at very low computational cost, but their application is limited to systems for which potential energy functions are available. This excludes most metal-containing proteins or those containing cofactors. In contrast, the GFN2-xTB semiempirical quantum chemical method is parametrized for almost the entire periodic table. The accuracy of GFN2-xTB is assessed for protein structures with respect to experimental X-ray data. Furthermore, the results are compared with those of two special-purpose FFs, HF-3c, PM6-D3H4X, and PM7. The test sets include proteins without any prosthetic groups as well as metalloproteins. Crystal packing effects are examined for a set of smaller proteins to validate the molecular approach. For the proteins without prosthetic groups, the special purpose FF OPLS-2005 yields the smallest overall RMSD to the X-ray data but GFN2-xTB provides similarly good structures with even better bond-length distributions. For the metalloproteins with up to 5000 atoms, a good overall structural agreement is obtained with GFN2-xTB. The full geometry optimizations of protein structures with on average 1000 atoms in wall-times below 1 day establishes the GFN2-xTB method as a versatile tool for the computational treatment of various biomolecules with a good accuracy/computational cost ratio.
专用经典力场(FFs)以极低的计算成本提供了良好的准确性,但其应用仅限于具有势能函数的系统。这排除了大多数含金属的蛋白质或含有辅因子的蛋白质。相比之下,GFN2-xTB半经验量子化学方法针对几乎整个元素周期表进行了参数化。针对蛋白质结构,根据实验X射线数据评估了GFN2-xTB的准确性。此外,还将结果与两种专用FFs(HF-3c、PM6-D3H4X和PM7)的结果进行了比较。测试集包括不含任何辅基的蛋白质以及金属蛋白。对一组较小的蛋白质研究了晶体堆积效应,以验证分子方法。对于不含辅基的蛋白质,专用FF OPLS-2005对X射线数据的总体均方根偏差(RMSD)最小,但GFN2-xTB提供了类似的良好结构,且键长分布更好。对于原子数多达5000的金属蛋白,GFN2-xTB获得了良好的总体结构一致性。在不到1天的壁钟时间内对平均含有1000个原子的蛋白质结构进行全几何优化,确立了GFN2-xTB方法是一种用于各种生物分子计算处理的通用工具,具有良好的准确性/计算成本比。