Song Qin, Zheng Yu-Jun, Sheng Wei-Guo, Yang Jun
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):561-574. doi: 10.1109/TNNLS.2020.2979486. Epub 2021 Feb 4.
Our previous study has constructed a deep learning model for predicting gastrointestinal infection morbidity based on environmental pollutant indicators in some regions in central China. This article aims to adapt the prediction model for three purposes: 1) predicting the morbidity of a different disease in the same region; 2) predicting the morbidity of the same disease in a different region; and 3) predicting the morbidity of a different disease in a different region. We propose a tridirectional transfer learning approach, which achieves the abovementioned three purposes by: 1) developing a combined univariate regression and multivariate Gaussian model for establishing the relationship between the morbidity of the target disease and that of the source disease together with the high-level pollutant features in the current source region; 2) using mapping-based deep transfer learning to extend the current model to predict the morbidity of the source disease in both source and target regions; and 3) applying the pattern of the combined model in the source region to the extended model to derive a new combined model for predicting the morbidity of the target disease in the target region. We select gastric cancer as the target disease and use the proposed transfer learning approach to predict its morbidity in the source region and three target regions. The results show that, given only a limited number of labeled samples, our approach achieves an average prediction accuracy of over 80% in the source region and up to 78% in the target regions, which can contribute considerably to improving medical preparedness and response.
我们之前的研究基于中国中部部分地区的环境污染物指标构建了一个用于预测胃肠道感染发病率的深度学习模型。本文旨在对该预测模型进行调整以实现三个目标:1)预测同一地区不同疾病的发病率;2)预测不同地区同一疾病的发病率;3)预测不同地区不同疾病的发病率。我们提出了一种三向迁移学习方法,该方法通过以下方式实现上述三个目标:1)开发一种结合单变量回归和多元高斯模型,以建立目标疾病发病率与源疾病发病率以及当前源地区的高级污染物特征之间的关系;2)使用基于映射的深度迁移学习来扩展当前模型,以预测源地区和目标地区中源疾病的发病率;3)将源地区中组合模型的模式应用于扩展模型,以得出一个用于预测目标地区中目标疾病发病率的新组合模型。我们选择胃癌作为目标疾病,并使用所提出的迁移学习方法来预测其在源地区和三个目标地区的发病率。结果表明,仅给定数量有限的标记样本,我们的方法在源地区实现了超过80%的平均预测准确率,在目标地区高达78%,这可为提高医疗准备和应对能力做出显著贡献。