Suppr超能文献

一种强大且多功能的共定位测试。

A powerful and versatile colocalization test.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 10;16(4):e1007778. doi: 10.1371/journal.pcbi.1007778. eCollection 2020 Apr.

Abstract

Transcriptome-wide association studies (TWAS and PrediXcan) have been increasingly applied to detect associations between genetically predicted gene expressions and GWAS traits, which may suggest, however do not completely determine, causal genes for GWAS traits, due to the likely violation of their imposed strong assumptions for causal inference. Testing colocalization moves it closer to establishing causal relationships: if a GWAS trait and a gene's expression share the same associated SNP, it may suggest a regulatory (and thus putative causal) role of the SNP mediated through the gene on the GWAS trait. Accordingly, it is of interest to develop and apply various colocalization testing approaches. The existing approaches may each have some severe limitations. For instance, some methods test the null hypothesis that there is colocalization, which is not ideal because often the null hypothesis cannot be rejected simply due to limited statistical power (with too small sample sizes). Some other methods arbitrarily restrict the maximum number of causal SNPs in a locus, which may lead to loss of power in the presence of wide-spread allelic heterogeneity. Importantly, most methods cannot be applied to either GWAS/eQTL summary statistics or cases with more than two possibly correlated traits. Here we present a simple and general approach based on conditional analysis of a locus on multiple traits, overcoming the above and other shortcomings of the existing methods. We demonstrate that, compared with other methods, our new method can be applied to a wider range of scenarios and often perform better. We showcase its applications to both simulated and real data, including a large-scale Alzheimer's disease GWAS summary dataset and a gene expression dataset, and a large-scale blood lipid GWAS summary association dataset. An R package "jointsum" implementing the proposed method is publicly available at github.

摘要

转录组关联研究(TWAS 和 PrediXcan)已越来越多地应用于检测基因预测的基因表达与 GWAS 特征之间的关联,然而,由于其因果推断的强制强假设可能被违反,这可能表明,但不能完全确定 GWAS 特征的因果基因。测试 colocalization 使其更接近于建立因果关系:如果 GWAS 特征和基因的表达共享相同的相关 SNP,这可能表明 SNP 通过基因对 GWAS 特征具有调节(因此可能是因果)作用。因此,开发和应用各种 colocalization 测试方法很有意义。现有的方法可能都有一些严重的局限性。例如,一些方法检验 SNP 存在 colocalization 的零假设,这并不理想,因为由于统计能力有限(样本量太小),通常不能简单地拒绝零假设。其他一些方法任意限制一个基因座中因果 SNP 的最大数量,这可能导致在等位基因异质性广泛存在的情况下失去功效。重要的是,大多数方法不能应用于 GWAS/eQTL 汇总统计数据或具有两个以上可能相关特征的病例。在这里,我们提出了一种基于多个特征的基因座的条件分析的简单而通用的方法,克服了现有方法的上述和其他缺点。我们证明,与其他方法相比,我们的新方法可以应用于更广泛的场景,并且通常表现更好。我们展示了其在模拟和真实数据中的应用,包括大规模阿尔茨海默病 GWAS 汇总数据集和基因表达数据集,以及大规模血脂 GWAS 汇总关联数据集。一个实现所提出方法的 R 包"jointsum"可在 github 上公开获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验